PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy flow redistributions of azimuthally polarized Bessel–Gaussian beam modulated by phase plate in tight focusing system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we investigate the energy flow redistributions of azimuthally polarized Bessel–Gaussian beams in the focal field by modulating the phase of the phase plate and the topological charge of the phase plate. The results indicate that an increase in phase change parameter will cause the energy flow distribution to shift towards the positive direction of the coordinate axis and result in energy flow separating, while an increase in m will gradually concentrate energy into the center area of the energy flow. The change in phase distribution will affect the shape of energy flow distribution and rotating the phase plate will also bring about changes in the energy flow distribution. These phenomena may contribute to particle capture and transport.
Słowa kluczowe
Czasopismo
Rocznik
Strony
423--434
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
autor
  • National Institute of Metrology, Beijing 10029, P.R. China
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
autor
  • China Jiliang University, College of Optics and Electronic, Hangzhou 310018, P.R. China
Bibliografia
  • [1] BEKSHAEV A., BLIOKH K.Y., SOSKIN M., Internal flows and energy circulation in light beams, Journal of Optics 13(5), 2011: 053001. https://doi.org/10.1088/2040-8978/13/5/053001
  • [2] KOTLYAR V.V., KOVALEV A.A., NALIMOV A.G., Energy density and energy flux in the focus of an optical vortex: Reverse flux of light energy, Optics Letters 43(12), 2018: 2921-2924. https://doi.org/10.1364/OL.43.002921
  • [3] KOTLYAR V.V., NALIMOV A.G., STAFEEV S.S., Exploiting the circular polarization of light to obtain a spiral energy flow at the subwavelength focus, Journal of the Optical Society of America B 36(10), 2019: 2850-2855. https://doi.org/10.1364/JOSAB.36.002850
  • [4] WU G., WANG F., CAI Y., Generation and self-healing of a radially polarized Bessel-Gauss beam, Physical Review A 89(4), 2014: 043807. https://doi.org/10.1103/PhysRevA.89.043807
  • [5] YUAN W., MAN Z., Manipulating the magnetic energy density and energy flux by cylindrically symmetric state of polarization, Optik 185, 2019: 208-214. https://doi.org/10.1016/j.ijleo.2019.03.103
  • [6] ZANNOTTI A., VASILJEVIĆ J.M., TIMOTIJEVIĆ D.V., JOVIĆ SAVIĆ D.M., DENZ C., Visualizing the energy flow of Tailored ligh, Advanced Optical Materials 6(8), 2018: 1701355. https://doi.org/10.1002/ adom.201701355
  • [7] MAN Z., DOU X., URBACH H.P., The evolutions of spin density and energy flux of strongly focused standard full Poincaré beams, Optics Communications 458, 2020: 124790. https://doi.org/10.1016/j.optcom.2019.124790
  • [8] YUAN G.H., WEI S.B., YUAN X.-C., Generation of nondiffracting quasi-circular polarization beams using an amplitude modulated phase hologram, Journal of the Optical Society of America A 28(8), 2011: 1716-1720. https://doi.org/10.1364/JOSAA.28.001716
  • [9] ZHOU J, MA H., ZHANG Y., ZHANG S., MIN C., YUAN X., Energy flow inversion in an intensity-invariant focusing field, Optics Letters 47(6), 2022: 1494-1497. https://doi.org/10.1364/OL.449056
  • [10] JIAO X., LIU S., WANG Q., GAN X., LI P., ZHAO J., Redistributing energy flow and polarization of a focused azimuthally polarized beam with rotationally symmetric sector-shaped obstacles, Optics Letters 37(6), 2012: 1041-1043. https://doi.org/10.1364/OL.37.001041
  • [11] DENG D., DU S., GUO Q., Energy flow and angular momentum density of nonparaxial Airy beams, Optics Communications 289, 2013: 6-9. https://doi.org/10.1016/j.optcom.2012.09.007
  • [12] WANG G., YU D., MIAO Y., LI Z., SHAN X., GAO X., An active energy compensation method of 2D Airy beam, Optik 225, 2021: 165805. https://doi.org/10.1016/j.ijleo.2020.165805
  • [13] MAN Z., LI X., ZHANG S., BAI Z., LYU Y., LI J., GE X., SUN Y., FU S., Manipulation of the transverse energy flow of azimuthally polarized beam in tight focusing system, Optics Communications 431, 2019: 174-180. https://doi.org/10.1016/j.optcom.2018.09.028
  • [14] MAN Z., BAI Z., ZHANG S., LI X., LI J., GE X., ZHANG Y., FU S., Redistributing the energy flow of a tightly focused radially polarized optical field by designing phase masks, Optics Express 26(18), 2018: 23935-23944. https://doi.org/10.1364/OE.26.023935
  • [15] LI H., WANG C., TANG M., LI X., Controlled negative energy flow in the focus of a radial polarized optical beam, Optics Express 28(13), 2020: 18607-18615. https://doi.org/10.1364/OE.391398
  • [16] GONG L., WANG X., ZHU Z., LAI S., FENG H., WANG J., GU B., Transversal energy flow of tightly focused off-axis circular polarized vortex beams, Applied Optics 61(17), 2022: 5076-5082. https://doi.org/10.1364/AO.459816
  • [17] KHONINA S.N., PORFIREV A.P., USTINOV A.V., BUTT M.A., Generation of complex transverse energy flow distributions with autofocusing optical vortex beams, Micromachines 12(3), 2021: 297. https://doi.org/10.3390/mi12030297
  • [18] GAO X.-Z., PAN Y., ZHANG G.-L., ZHAO M.-D., REN Z.-C., TU C.-G., LI Y.-N., WANG H.-T., Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields, Photonics Research 5(6), 2017: 640-648. https://doi.org/10.1364/PRJ.5.000640
  • [19] WOLF E., Electromagnetic diffraction in optical systems. I. An integral representation of the image field, Proceedings of the Royal Society of London 253(1274), 1959: 349-357. https://doi.org/10.1098/rspa.1959.0199
  • [20] RICHARDS B., WOLF E., Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system, Proceedings of the Royal Society of London 253(1274), 1959: 358-379. https://doi.org/10.1098/rspa.1959.0200
  • [21] WANG H., SHI L., LUKYANCHUK B., SHEPPARD C., CHONG C.T., Creation of a needle of longitudinally polarized light in vacuum using binary optics, Nature Photonics 2, 2008: 501-505. https://doi.org/10.1038/nphoton.2008.127
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c576411-108c-4159-b53a-2dc1bcfa700c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.