Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Assessing the tendency of suspended sediment concentration (SSC) in the river watersheds enables a better understanding of the hydromorphological properties of its basins and the associated processes. In addition, analyzing this trend is essential to address several important issues such as erosion, water pollution, human health risks, etc. Therefore, it is critical to determine a proper method to quantify spatio-temporal variability in SSC. In recent years, remote sensing and GIS technologies are being widely applied to support scientists, researchers, and environmental resource investigators to quickly and synchronously capture information on a large scale. The combination of remote sensing and GIS data will become the reliable and timely updated data source for the managers, researchers on many fields. There are several tools, software, algorithms being used in extracting information from satellites and support for the analysis, image interpretation, data collection. The information from satellite images related to water resources includes vegetational cover, flooding events on a large scale, rain forecast, population distribution, forest fire, landslide movements, sedimentation, etc., and especially information on water quality, sediment concentration. This paper presents the initial result from LANDSAT satellite image interpretation to investigate the amount of sediment carried downstream of the Ba river basin.
Czasopismo
Rocznik
Tom
Strony
293--303
Opis fizyczny
Bibliogr. 52 poz., rys., zdj.
Twórcy
autor
- Hanoi University of Natural Resources and Environment, Hanoi, Vietnam
autor
- Thuyloi University, Department of Surveying, Hanoi, Vietnam
autor
- Thuyloi University, Department of Surveying, Hanoi, Vietnam
Bibliografia
- 1. Meade, R.H., Yuzyk, T.T., Day, T.J.,1990. Movement and storage of sediment in rivers of the United State and Canada. In: M.G. Wolman and H.C. Riggs, eds. The geology of North American, surface water hydrology. Co: Geological Society of American, 1: 255-280.
- 2. Knighton, A.D., 1998. Fluvial forms and processes: a new perspective. London, UK: Arnold, 383p
- 3. Markert, K.N., Schmidt, A.M., Griffin, R.E., Flores, A.I., Poortinga A.; Saah D.S.; Muench R.E.; Clinton N.E.; Chishtie F.; Kityuttachai K.; Someth P.; Anderson E.R.; Aekakkararungroj A.; Ganz D, 2018. Historical and Operational Monitoring of Surface Sediments in the Lower Mekong Basin Using Landsat and Google Earth Engine Cloud Computing. Remote sensing, 10(6).
- 4. Harrington, S.T., Harrington, J.R., 2013. As assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland. Geomorphology 2013, 185: 27–38.
- 5. Collins, A.L., Walling, D.E., 2004. Documenting catchment suspended sediment sources: problems, approaches and prospects. Prog Phys Geogr, 28: 159–169.
- 6. Ouillon, S., Douillet, P., Andrefouet, S., 2004. Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia. Coral Reefs, 23: 109–122.
- 7. Zheng, M., 2018. A spatially invariant sediment rating curve and its temporal change following watershed management in the Chinese Loess Plateau. Sci. Total Environ, 630: 1453–1463.
- 8. Asselman, N.E.M., 2000. Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234: 228–248, doi:10.1016/S0022-1694(00)00253-5
- 9. Horowitz, A.J., 2003. An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrological Processes, 17: 3387–3409, doi:10.1002/(ISSN)1099-1085
- 10. Jung, B.M., Femandes, E.H., Mojjer, Jr O.O., Rodrihuez, F.G., 2020. Estimating Suspended Sediment Concentrations from River Discharge Data for Reconstructing Gaps of Information of Long-Term Variability Studies, 12(2382), doi:10.3390/w12092382
- 11. Hung, N.T., Luan, N.T., Cuong, V.D., Thanh, D.H., Long, V.H., Giang, N.V., 2017. Research and application of remote sensing to determinate the concentration of the suspended sediment in the Hoi estuary, Ma river. Journal of Water Resources Science and Technology, 37: 13-25, in Vietnamese
- 12. Tinh, T.V., Hung, T.D., 2019. Research and application of remote sensing to determinate the concentration of the suspended sediment in the Southern coastal estuary area. Journal of climatechange science, 12: 16-23, in Vietnamese.
- 13. Wang, J.J., Lu, X.X., 2010. Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Science of the Total Enviroment, 408: 1131-1138.
- 14. Peterson, K.T., Sagan, V., Sidike, P., Cox, A.L., Martinez, M., 2018. Suspended Sediment Concentration Estimation from Landsat Imagery along the Lower Missouri and Middle Mississippi Rivers Using an Extreme Learning Machine. Remote sensing, 10(10). https://doi.org/10.3390/rs10101503
- 15. Gao, P., 2008. Understanding watershed suspended sediment transport. Progress in Physical Geography, 32(3): 243–263. doi:10.1177/0309133308094849
- 16. Kisi, O., 2012. Modeling discharge-suspended sediment relationship using least square support vector machine. Journal of Hydrology, 456-457(110–120), doi:10.1016/j.jhydrol.2012.06.019
- 17. Bhattacharya, B. and Solomatine, D.P., 2006. Special issue: machine learning in sedimentation modelling. Neural Networks, 19: 208–214, doi:10.1016/j.neunet.2006.01.007
- 18. Shiri, J. and Kişi, Ö., 2012. Estimation of daily suspended sediment load by using wavelet conjunction models. Journal of Hydrologic Engineering, 17: 986–1000, doi:10.1061/(ASCE)HE.1943-5584.0000535
- 19. Edwards, T.K., Glysson, G.D., 2018. Field Methods for Measurement of Fluvial Sediment. Available online: https://pubs.er.usgs.gov/publication/ofr86531 (accessed on 17 September 2018).
- 20. Meade, R.H., 2018. Setting: Geology, Hydrology, Sediments, and Engineering of the Mississippi River. Available online: https://pubs.usgs.gov/circ/circ1133/geosetting.html (accessed on 17 September 2018).
- 21. Proulx, S.O., Hilaire, A.S., Courtenay, S.C., Haralampides, K.A., 2016. Estimation of suspended sediment concentration in the Saint John River using rating curves and a machine learning approach. Hydrological Sciences Journal, 61(10), https://doi.org/10.1080/02626667.2015.1051982
- 22. Martinez, J.M., Espinoza-Villar, R., Armijos, E., Silva Moreira, 2015. The optical properties of river and floodplain waters in the Amazon River Basin: Implications of satelite-based measurements of suspended particule matter. Journal of Geophysical Research. Earth Surface, 120(7): 1274-1287. http://dx.doi.org/10.1002/2014JF003404.
- 23. Ha, T.T.L., Trung, V.N., Lan, T.P., Le, T.L., Huong, T.D., Long, H.N., 2018. Impact of urbanization on land surface temperature using remote sensing and GIS: A case of Tay Ho district, Hanoi city, Vietnam. Journal of Mining and Earth Sciences, 59(6): 66-75.
- 24. Park, E., Latrubesse, E.M., 2014. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ, 147: 232–242.
- 25. Umar, M., Rhoads, B.L., Greenberg, J.A., 2018. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. J. Hydrol, 556: 325–338.
- 26. Nooren, K., Hoek, W.Z., Winkels, T.G., Huizinga, A., van der Plicht, J., Van-Dam, R., VanHeteren, S., Van-Bergen, M., Prins, M.A., Reimann, T., Wallinga, J., Cohen, K., Minderhoud, P., Middelkoop, H., 2017. The Usumacinta-Grijalva beach-ridge plain in southern Mexico: A highresolution archive of river discharge and precipitation. Earth Surface Dynamics, 5(3): 529-556.
- 27. Son, S., Wang, M., 2012. Water properties in Chesapeake Bay from MODIS-Aqua measurements. Remote Sens. Environ, 123: 163–174.
- 28. Feng, L., Hu, C., Chen, X., Tian, L., Chen, L., 2012. Human induced turbidity changes in Poyang Lake between 2000 and 2010: Observations from MODIS. J. Geophys. Res, 117: 1–19.
- 29. Montanher, O.C., Novo, E.M.L.M., Barbosa, C.C.F., Renno, C.D., Silva, T.S, 2014. Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. Int. J. Appl. Earth Obs. Geoinf, 29: 66–77.
- 30. Pereira, L.S.F., Andes, L.C., Cox, A.L., Ghulam, A., 2018. Measuring suspended-sediment concentration and turbidity in the middle Mississippi and lower Missouri Rivers using Landsat data. J. Am. Water Resour. Assoc, 54: 440–450
- 31. Shahzad, M.I., Meraj, M., Nazeer, M., Zia, I., Inam, A., Mehmood, K., Zafar, H., 2018. Empirical estimation of suspended solids concentration in the Indus Delta Region using Landsat-7 ETM+ imagery. Journal of Environmental Management, 209: 254-261. http://dx.doi.org/10.1016/j.jenvman.2017
- 32. Duarte, C.R., Cordeiro, E.F., Araujo da costa, J.H.B., Sabadia, J.A.B., Salgueiro, A.R., Souto, M.V.S., Silva Filho, W.F., 2016. Principal component analysis and morphostructural characterization of a portion of the eastern continental shelf of Ceará, Brazil, using Landsat 5-TM images. Journal of Sedimentary Environments, 1(3): 324-333. http://dx.doi.org/10.12957/jse.2016.25905.
- 33. Mangiarotti, S., Martinez, J.M., Bonnet, M.P., Buarque, D.C., Filizola, N., Mazzega, P., 2013. Discharge and suspended sediment flux estimated along the mainstream of the Amazon and the Madeira Rivers (from in situ and MODIS Satellite Data). Int. J. Appl. Earth Obs. Geoinf, 21: 341–355.
- 34. Wu, G., Cui, L., Liu, L., Chen, F., Fei, T., Liu, Y., 2015. Statistical model development and estimation of suspended particulate matter concentrations with Landsat 8 OLI images of Dongting Lake, China. Int. J. Remote Sens, 36: 343–360.
- 35. Market, K.N., Schimt, C.M., Griffin, R.E., Flores, A.I., Poortinga, A., Saah, D.S., Muench, R.E., Clinton, N.E., Chishtie, F., Kityuttachai, K., Someth, P., Anderson, E.R., Aekkapol Aekakkararungroj, A., Ganz, D.J., 2018. Historical and operational monitoring of surface sediments in the lower mekong basin using landsat and Google Earth engine cloud computing. Remote Sensing, 10(909). http://dx.doi.org/10.3390/rs10060909.
- 36. Manzo, C., Braga, F., Zaggia, L., Brando, V.E., Giardino, C., Bresciani, M., Bassani, C., 2018. Spatio-temporal analysis of prodelta dynamics by means of new satellite generation: the case of Po river by Landsat-8 data. Int J Appl Earth Obs Geoinformation, 66: 210-225. http://dx.doi.org/10.1016/j.jag.2017.11.012.
- 37. Ko, N.T., Rutten, M., Conallin, J., 2017. Remote Sensing Analysis of Temperature and Suspended Sediment Concentration in Ayeyarwady River in Myanmar. Global Journal of Engineering and Technology Review, 2(3): 30-47.
- 38. Brezonik, P., Menken, K.D., Bauer, M., 2005. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag, 21: 373–382.
- 39. Overeem, I., Hudson, B.D., Syvitski, J.P.M., Mikkelsen, A.B., Hasholt, B., van den Broeke, M.R., Noël, B.P.Y., Morlighem, M., 2017. Substantial export of suspended sediment to the global oceans from glacial erosion in Greenland. Nat. Geosci, 10(859).
- 40. Gholizadeh, M.H., Melesse, A.M., Reddi, L.A., 2016. Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors, 16(1298).
- 41. Dung, N.B., 2017. Research on application of geomatics technology to improve the quality of space data for the investigation and planning of water resources. Ministry-level scientific research project. In Vietnamese.
- 42. Sang, N.P., Dung, T.N., Hung, T.K., Hien, T.T.P., Toan, T.T., Chinh, C.T.V, 2020. The degree of chemical weathering in the Ba River basin, South Central Vietnam: Major-element geochemistry investigations of morden river sediments and sedimentary rocks, Journal of Mining and Earth Sciens, 61(1): 82-91, DOI: 10.46326/JMES.2020.61(1).09
- 43. Sutari, C.A.T., Van der Perk M., Middelkoop, H., 2020. Estimation of suspended sediment concentrations in the Rhine River using Landsat Satellite Images. IOP Conf. Series: Earth and Environmental Science, 451. doi:10.1088/1755-1315/451/1/012079
- 44. Richards, A.J., 2013. Remote Sensing Digital Image Analysis (5th Ed.). Springer, Berlin.
- 45. Hhernández-cruz, B., Vásquez-ortiz, M., Canet, C., Prado-molina, J., 2019. Algorithm to calculate suspended sediment concentration using Landsat 8 imagery. Applied Ecology and Environmental Research, 17(3): 6549-6562, http://dx.doi.org/10.15666/aeer/1703_65496562
- 46. Rokni, K., Ahmad, A., Selamat, A., Hazini, S., 2014. Water feature extraction and change detection using multitemporal imagery. – Remote Sensing, 6(5): 4173-4189.
- 47. Cherrymar, R.A., Ricardo, I.R., 2008. Assessment Monitoring of Suspended Sediment of Alpine Glaciers, using Remote Sensing Techniques. Department of Geology, University of Puerto Rico.
- 48. Shafaie, M., Ghodosi, H., Mostofi, K.H., 2015. River sediment monitoring using remote sensing and GIS. Department of Civil Engineering, Faculty of Engineering, University of Shahid Chamran, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W5, 2015, International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish Island, Iran, 675-680, DOI: 10.5194/isprsarchives-XL-1-W5-675-2015
- 49. Minwei Zhang, QingDong, Tingwei Cui, CunjinXue, SongliZhang (2014). Suspended sediment monitoring and assessment for Yellow River estuary from Landsat TM and ETM+ imagery. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing, China, 146: 136-147, DOI: 10.1016/j.rse.2013.09.033
- 50. Giang, N.T., Thao, H.T., Vinh, T.N., Binh, P.D.H., Quan, V.D., 2017. Study on Sediment Regime Changes in Downstream of the Ba River, Vietnam under the Impact of Reservoirs System. VNU Journal of Science: Earth and Environmental Sciences, 33(4): 127-134.
- 51. Hung, N.T., Luan, N.T., Cuong, V.D., Thanh, D.H., Long, V.H., Giang, N.V., 2017. Appication satellite images to determine the concentration of suspended sediment at Hoi estuary, Ma river. Journal of Water Resources Science and Techonology, 37: 13-24.
- 52. Linh, V.T.P., Thanh, V.Q., Hoang, L.V., 2019. Application of Landsat images to estimate suspended sediment. concentration in the Hau and Tien rivers. Can Tho University Journal of Science, 55: 134-144.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c55839d-bfd0-40e1-80cc-45f40a1bf921