PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Do seasonal dynamics influence traits and composition of macrobenthic assemblages of Sundarbans Estuarine System, India?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study investigates the influence of seasonal dynamics on macrobenthic assemblages in four seasons of 2017-2018 from the central sector of Indian Sundarbans which is under the constant threat of climate change. Besides taxonomic analysis, a trait-based approach has also been applied to assess the change in their ecosystem functioning. The maximum species density (11675 ± 11883.31 ind. m−2) was observed during the spring season which declines considerably in the monsoon season (5875 ± 6224.08 ind. m−2). A total of 95 macrobenthic taxa were recorded from Sundarbans and they were dominated by families like Capitellidae, Donacidae, Magelonidae, Nereididae, Paraonidae and Spionidae. Overall, polychaetes have shown higher taxonomic and functional variation than other groups. Opportunistic polychaete species have shown a prominent compositional shift during post-monsoon seasons. Both the univariate and multivariate analyses have shown a significant relation between macrobenthic composition and environmental parameters. SIMPER has depicted that environmental parameters made the station 4 unique for several types of molluscs like Acteocina estriata, Stenothyra deltae and Meretrix meretrix during spring. Trait percentages also showed a seasonal succession pattern and among the trait categories, burrowers and deposit feeders dominated the estuary. A gradual increase in suspension feeders in spring has been noticed. RLQ approach with fourth-corner analysis was used to unravel the relationship between traits and environmental parameters. Hence, the present study provided a comprehensive idea about the species composition along with their trait categories from such a dynamic habitat. That could be the first stepping stone for a long term monitoring of macrobenthic assemblages from this largest delta on earth.
Czasopismo
Rocznik
Strony
80--98
Opis fizyczny
Bibliogr. 103 poz., rys., tab., wykr.
Twórcy
  • Marine Ecology Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
autor
  • Marine Ecology Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
Bibliografia
  • [1] Aleem, A. A., 1972. Effect of river outflow management on marine life. Mar. Biol. 15, 200-208. https://doi.org/10.1007/BF00383550.
  • [2] Aller, R. C., 1983. The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. Mar. Res. 41 (2), 299-322. https://doi.org/10.1357/002224083788520225.
  • [3] Alongi, D. M., 1989. Ecology of tropical soft-bottom benthos: a review with emphasis on emerging concepts. Rev. Biol. Trop. 37, 85-100.
  • [4] Anderson, M. J., Gorley, R. N., Clarke, K. R., 2008. PERMANOVA A+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E, Plymouth, UK.
  • [5] Ansell, A. D., Trueman, E. R., 1973. The energy cost of migration of the bivalve Donax on tropical sandy beaches. Mar. Behav. Physiol. 2, 21-32. https://doi.org/10.1080/10236247309386914.
  • [6] Attrill, M. J., 2002. A testable linear model for diversity trends in estuaries. J. Anim. Ecol. 71 (2), 262-269. https://doi.org/10.1046/j.1365-2656.2002.00593.x.
  • [7] Benjamini, Y., Hochberg, Y., 1995. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289-300.
  • [8] Bissoli, L. B., Bernardino, A. F., 2018. Benthic macrofaunal structure and secondary production in tropical estuaries on the eastern marine ecoregion of Brazil. Peer J. 6, e4441. https://doi.org/10.7717/peerj.4441.
  • [9] Bock, M. J., Miller, D. C., 1996. Fluid flow and suspended particulates as determinants polychaete feeding behavior. J. Mar. Res. 54 (3), 565-588. https://doi.org/10.1357/0022240963213547.
  • [10] Bremner, J., Rogers, S., Frid, C., 2003. Assessing functional diversity in marine benthic ecosystems: a comparison of approaches. Mar. Ecol. Prog. Ser. 254, 11-25. https://doi.org/10.3354/meps254011.
  • [11] Bremner, J., Rogers, S. I., Frid, C. L. J., 2006. Methods for describing ecological functioning of marine benthic assemblages using biological traits analysis (BTA). Ecol. Indic. 6 (3), 609-622. https://doi.org/10.1016/j.ecolind.2005.08.026.
  • [12] Buchanan, J. B., 1984. Sediment analysis. In: Holme, N. A., McIntyre, A. D. (Eds.), Methods for the Study of Marine Benthos. Blackwell Scientific Publications, Oxford, 41-65.
  • [13] Chatterjee, M., Shankar, D., Sen, G. K., Sanyal, P., Sundar, D., Michael, G. S., Chatterjee, A., Amol, P., Mukherjee, D., Suprit, K., Mukherjee, A., Vijith, V., Chatterjee, S., Basu, A., Das, M., Chakraborti, S., Kalla, A., Misra, S. K., Mukhopadhyay, S., Mandal, G., Sankar, K., 2013. Tidal variations in the Sundarbans Estuarine System, India. J. Earth Syst. Sci. 122 (4), 899-933. https://doi.org/10.1007/s12040-013-0314-y.
  • [14] Chaudhuri, A.B., Choudhury, A., 1994. Mangroves of the Sundarbans. Volume One: India. IUCN Wetland Programme, Bangkok, Thailand, 2479 pp.
  • [15] Chen, Q., Li, J., Zhang, L., Lu, H., Ren, H., Jian, S., 2015. Changes in the macrobenthic faunal community during succession of a mangrove forest at Zhanjiang, South China. J. Coast. Res. 31 (2), 315-325. https://doi.org/10.2112/JCOASTRES-D-13-00019.
  • [16] Chevene, F., Dolédec, S., Chessel, D., 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshw. Biol. 31, 295-309. https://doi.org/10.1111/j.1365-2427.1994.tb01742.x.
  • [17] Clarke, K. R., Warwick, R. M., 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn., PRIMER-E, Plymouth, UK.
  • [18] Clarke, K. R., Gorley, R. N., 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.
  • [19] Clarke, K. R., Somesrfield, P. J., Gorley, R. N., 2008. Testing of null hypotheses in explanatory community analyses: Similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 366 (1-2), 56-69. https://doi.org/10.1016/j.jembe.2008.07.009.
  • [20] Constable, A. J., 1999. Ecology of benthic macro-invertebrates in soft-sediment environments: A review of progress towards quantitative models and predictions. Aust. J. Ecol. 24, 452-476. https://doi.org/10.1046/j.1442-9993.1999.00977.x.
  • [21] Day, J. H., 1967. A monograph on the polychaeta of southern Africa. Part I (Errantia) & II (Sedentaria). Trustees of the British Museum (Natural History), London, 656 pp.
  • [22] Dey, A., 2006. Handbook on mangrove associate molluscs of Sundarbans XI. Zoological Survey of India, 96 pp.
  • [23] Dey, M., Ganguly, D., Chowdhury, C., Majumder, N., Jana, T. K., 2012. Intra-annual variation of modern foraminiferal assemblage in a tropical mangrove ecosystem in india. Wetlands. 32, 813-826. https://doi.org/10.1007/s13157-012-0312-x.
  • [24] Dolédec, S., Chessel, D., ter Braak, C. J. F., Champely, S., 1996. Matching species traits to environmental variables: a new threetable ordination method. Environ. Ecol. Stat. 3 (2), 143-166. https://doi.org/10.1007/BF02427859.
  • [25] Dolédec, S., Statzner, B., Bournard, M., 1999. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshw. Biol. 42 (4), 737-758. https://doi.org/10.1046/j.1365-2427.1999.00509.x.
  • [26] Dolédec, S., Phillips, N., Scarsbrook, M., Riley, R. H., Townsend, C. R., 2006. Comparison of structural and functional approaches to determining land use effects on grassland stream invertebrate communities. J. N. Am. Benthol. Soc. 25 (1), 44-60. http://dx.doi.org/10.1899/0887-3593(2006)25[44:COSAFA]2.0.CO;2.
  • [27] Dray, S., Dufour, A. B., 2007. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1-20.
  • [28] Dray, S., Legendre, P., 2008. Testing the species traits-environment relationships: the fourth-corner problem revisited. Ecology. 89, 3400-3412.
  • [29] Dray, S., 2013. A Tutorial to Perform Fourth-Corner and RLQ Analyses in R.
  • [30] Dray, S., Choler, P., Dolédec, S., Peres-Neto, P. R., Thuiller, W., Pavoine, S., ter Braak, C. J. F., 2014. Combining the fourth-corner and the RLQ methods for assessing trait responses to environmental variation. Ecology. 95 (1), 14-21. https://doi.org/10.1890/13-0196.1.
  • [31] Egres, A. G., Hatje, V., Miranda, D. A., Gallucci, F., Barros, F., 2019. Functional response of tropical estuarine benthic assemblages to perturbation by Polycyclic Aromatic Hydrocarbons. Ecol. Indic. 96, 229-240. https://doi.org/10.1016/j.ecolind.2018.08.062.
  • [32] El Wakeel, S. K., Riley, J. P., 1957. The Determination of Organic Carbon in Marine Muds. ICES J. Mar. Sci. 22, 180-183. https://doi.org/10.1093/icesjms/22.2.180.
  • [33] Elliott, M., Whitfield, A. K., 2011. Challenging paradigms in estuarine ecology and management. Estuar. Coast. Shelf Sci. 94 (4), 306-314. https://doi.org/10.1016/j.ecss.2011.06.016.
  • [34] Fauchald, K., Jumars, P. A., 1979. The Diet of Worms: a Study of Polychaete Feeding Guilds. Mar. Biol. Ann. Rev. 17, 193-284.
  • [35] Faulwetter, S., Markantonatou, V., Pavloudi, C., Papageorgiou, N., Keklikoglou, K., Chatzinikolaou, E., Pafilis, E., Chatzigeorgiou, G., Vasileiadou, K., Dailianis, T., Fanini, L., Koulouri, P., Arvanitidis, C., 2014. Polytraits: A database on biological traits of marine polychaetes. Biodiversity Data J. 2, e1024. https://doi.org/10.3897/BDJ.2.e1024.
  • [36] Fauvel, P., 1953. The fauna of India including Pakistan, Cylon, Burma and Malaya: Annelida, Polychaeta. The Indian Press, Allahabad, 507 pp.
  • [37] Fernández-Rodríguez, V., Santos, C. S. G., Pires, A. P. F., 2019. Metaanalysis of the effects of organic matter on polychaetes of the east coast of South America. Mar. Environ. Res. 149, 148-156. https://doi.org/10.1016/J.MARENVRES.2019.06.001.
  • [38] Fukushima, A., Kanamori, H., Matsumoto, J., 2019. Regionality of long-term trends and interannual variation of seasonal precipitation over India. Prog. Earth Planet. Sci. 6, 1-20. https://doi.org/10.1186/s40645-019-0255-4.
  • [39] Gaonkar, U. V., Sivadas, S. K., Ingole, B. S., 2013. Effect of tropical rainfall in structuring the macrobenthic community of Mandovi estuary, west coast of India. J. Mar. Biol. Assoc. U.K. 93 (7), 1727-1738. https://doi.org/10.1017/S002531541300026X.
  • [40] Ghosh, M., Mandal, S., Chatterjee, M., 2018. Impact of unusual monsoonal rainfall in structuring meiobenthic assemblages at Sundarban estuarine system, India. Ecol. Indic. 94, 139-150. https://doi.org/10.1016/j.ecolind.2018.06.067.
  • [41] Ghosh, M., Mandal, S., 2019. Does vertical distribution of meiobenthic community structure differ among various mangrove habitats of Sundarban Estuarine System? Reg. Stud. Mar. Sci. 31, 1-11. https://doi.org/10.1016/j.rsma.2019.100778.
  • [42] Giese, A., Pierse, J., 1977. In: Reproduction of Marine Invertebrates Volume IV Molluscs: Gastropods and Cephalopods, 4. Acad. Press, 369 pp.
  • [43] Grasshoff, K., Kremling, K., Ehrhardt, M., 1999. Methods of seawater analysis, 3rd edn. Verlag Chemie, Weinheim, Germany, 634 pp.
  • [44] Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T., Törnroos, A., Bonaglia, S., Bonsdorff, E., Brüchert, V., Gårdmark, A., Järnström, M., Kotta, J., Lindegren, M., Nordström, M. C., Norkko, A., Olsson, J., Weigel, B., Žydelis, R., Blenckner, T., Niiranen, S., Winder, M., 2017. The importance of benthic-pelagic coupling for marine ecosystem functioning in a changing world. Glob. Chang. Biol. 23 (6), 2179-2196. https://doi.org/10.1111/gcb.13642.
  • [45] Harkantra, S. N., Parulekar, A. H., 1985. Community structure of sand-dwelling macrofauna of an estuarine beach in Goa, India. Mar. Ecol. Prog. Ser. 30, 291-294.
  • [46] Harkantra, S. N., Rodrigues, N. R., 2003. Pattern of species succession of soft-bottom macrofauna in the estuaries of Goa, west coast of India. Curr. Sci. 85 (10), 1458-1474. https://doi.org/10.2307/24108829.
  • [47] Hunt, H. L., Scheibling, R. E., 1997. Role of early post-settlement mortality in recruitment of benthic marine invertebrates. Mar. Ecol. Prog. Ser. 155, 269-301. https://doi.org/10.3354/meps155269.
  • [48] Hutchinson, G. E., MacArthur, R. H., 1959. A theoretical ecological model of size distributions among species of animals. Am. Nat. 93, 117-125.
  • [49] Hylleberg, J., Natewathana, A., 1984. Responses of polychaete families to monsoon and offshore mining associated sediment disturbance. In: Hutchings, P. A. (Ed.), Proceedings of the First International Polychaete Conference, Sydney. The Linnean Society of New South Wales, 279-291.
  • [50] Hu, C., Dong, J., Gao, L., Yang, X., Wang, Z., Zhang, X., 2019. Macrobenthos functional trait responses to heavy metal pollution gradients in a temperate lagoon. Environ. Pollut. 253, 1107-1116. https://doi.org/10.1016/j.envpol.2019.06.117.
  • [51] IMD, 2010. 348 Climate Profile of India. Environ. Monit. Res. Centre, India Meteorol. Dep. 122.
  • [52] IPCC, 2013. Climate Change 2013. The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • [53] Jumars, P. A., Dorgan, K. M., Lindsay, S. M., 2015. Diet of Worms Emended: An Update of Polychaete Feeding Guilds. Ann. Rev. Mar. Sci. 7, 497-520. https://doi.org/10.1146/annurev-marine-010814-020007.
  • [54] Keddy, P., 1992. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3 (2), 157-164. https://doi.org/10.2307/3235676.
  • [55] Kennish, M. J., 2002. Environmental threats and environmental future of estuaries. Environ. Conserv. 29 (1), 78-107. https://doi.org/10.1017/S0376892902000061.
  • [56] Kovach, W. L., 1998. MVSP-multi-variate statistical package for windows, Ver 3.0. Kovach computing services, Pentraeth.
  • [57] Lara, R. J., Dittmar, T., 1999. Nutrient dynamics in a mangrowe creek (North Brazil) during the dry season. Mangroves and Salt Marshes. 3, 185-195.
  • [58] Legendre, P., Galzin, R., Harmelin-Vivien, M. L., 1997. Relating behavior to habitat: solutions to the fourth corner problem. Ecology. 78 (2), 547-562. https://doi.org/10.1890/0012-9658(1997)078[0547:RBTHST]2.0.CO;2.
  • [59] Little, S., Wood, P. J., Elliott, M., 2017. Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change. Estuar. Coast. Shelf Sci. 198 (B), 610-625. https://doi.org/10.1016/j.ecss.2016.07.020.
  • [60] Manna, S., Chaudhuri, K., Bhattacharyya, S., Bhattacharyya, M., 2010. Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves. Sal. Sys. 6 (8), 1-16. https://doi.org/10.1186/1746-1448-6-8.
  • [61] MarLIN, 2006. BIOTIC — Biological Traits Information Catalogue. Marine Life Information Network Marine Biological Association of the United Kingdom, Plymouth, available at: www.marlin.ac.uk/biotic (accessed at: 03/01/2016).
  • [62] Medeiros, C. R., Hepp, L. U., Patrício, J., Molozzi, J., 2016. Tropical estuarine macrobenthic communities are structured by turnover rather than nestedness. PLoS One. 11 (9), 1-14. https://doi.org/10.1371/journal.pone.0161082.
  • [63] Mestdagh, S., Bagaço, L., Braeckman, U., Ysebaert, T., De Smet, B., Moens, T., Van Colen, C., 2018. Functional trait responses to sediment deposition reduce macrofauna-mediated ecosystem functioning in an estuarine mudflat. Biogeosciences. 15, 2587-2599. https://doi.org/10.5194/bg-15-2587-2018.
  • [64] Misra, A., 1995. Polychaetes. In: Hugli Matla Estuary. Estuarine Ecosystem Series 2. Zoological Survey of India, Calcutta, 93-155.
  • [65] Modéran, J., Bouvais, P., David, V., Le Noc, S., Simon-Bouhet, B., Niquil, N., Miramand, P., Fichet, D., 2010. Zooplankton community structure in a highly turbid environment (Charente estuary, France): spatio-temporal patterns and environmental control. Estuar. Coast. Shelf Sci. 88 (2), 219-232. https://doi.org/10.1016/j.ecss.2010.04.002.
  • [66] Mukhopadhyay, S. K., Biswas, H., De, T. K., Jana, T. K., 2006. Fluxes of nutrients from the tropical River Hooghly at the land-ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. J. Mar. Syst. 62 (1-2), 9-21. https://doi.org/10.1016/j.jmarsys.2006.03.004.
  • [67] Munari, C., 2013. Benthic community and biological trait composition in respect to artificial coastal defence structures: A study case in the northern Adriatic Sea. Mar. Environ. Res. 90, 47-54. https://doi.org/10.1016/j.marenvres.2013.05.011.
  • [68] Nandy, T., Mandal, S., Chatterjee, M., 2018a. Intra-monsoonal variation of zooplankton population in the Sundarbans Estuarine System, India. Environ. Monit. Assess. 190 (10), 1-20. https://doi.org/10.1007/s10661-018-6969-8.
  • [69] Nandy, T., Mandal, S., Deb, S., Ghosh, M., Nath, T., Chatterjee, M., 2018b. Short-term variations in surface water properties in the Sundarban Estuarine System, India. Sustain. Water Resour. Manag. 4, 559-566. https://doi.org/10.1007/s40899-017-0139-y.
  • [70] Newell, R. I. E., 2004. Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J. Shellfish Res. 23 (1), 51-61.
  • [71] Oug, E., Fleddum, A., Rygg, B., Olsgard, F., 2012. Biological traits analyses in the study of pollution gradients and ecological functioning of marine soft bottom species assemblages in a fjord ecosystem. J. Exp. Mar. Bio. Ecol. 432-433, 94-105. https://doi.org/10.1016/j.jembe.2012.07.019.
  • [72] Pacheco, A. S., González, M. T., Bremner, J., Oliva, M., Heilmayer, O., Laudien, J., Riascos, J. M., 2011. Functional diversity of marine macrobenthic communities from sublittoral soft-sediment habitats off northern Chile. Helgol. Mar. Res. 65 (3), 413-424. https://doi.org/10.1007/s10152-010-0238-8.
  • [73] Pant, V., Girishkumar, M. S., Bhaskar, T. V. S. U., Ravichandran, M., Papa, F., Thangaprakash, V. P., 2015. Observed interannual variability of near surface salinity in the Bay of Bengal. J. Geophys. Res. 120 (5), 3315-3329. https://doi.org/10.1002/2014JC010340.
  • [74] Penry, D. L., Jumars, P. A., 1990. Gut architecture, digestive constraints and feeding ecology of deposit-feeding and carnivorous polychaetes. Oecologia. 82, 1-11.
  • [75] Peterson, C. H., 1977. Competitive organization of the soft-bottom macrobenthic communities of southern California lagoons. Mar. Biol. 43, 343-359. https://doi.org/10.1007/BF00396928.
  • [76] Peterson, C. H., Skilleter, G. A., 1994. Control of foraging behaviour of individuals within an ecosystem context: the clam Macoma balthica, flow environment, and siphoncropping fishes. Oecologia. 100 (3), 256-267. https://doi.org/10.1007/BF00316953.
  • [77] Piló, D., Ben-Hamadou, R., Pereira, F., Carriço, A., Pereira, P., Corzo, A., Gaspar, M. B., Carvalho, S., 2016. How functional traits of estuarine macrobenthic assemblages respond to metal contamination? Ecol. Indicat. 71, 645-659.
  • [78] Raha, A., Das, S., Banerjee, K., Mitra, A., 2012. Climate change impacts on Indian Sunderbans: A time series analysis (1924-2008). Biodivers. Conserv. 21, 1289-1307. https://doi.org/10.1007/s10531-012-0260-z.
  • [79] Rao, D. S., 1980. Ecology of Heteromastus similis Southern 1921 (Polychaeta: Capitellidae) in the Vasishta Godavari estuary. Proc. Anim. Sci. 89, 407-414. https://doi.org/10.1007/BF03179126.
  • [80] Rastogi, D., Ashfaq, M., Leung, L. R., Ghosh, S., Saha, A., Hodges, K. I., Evans, K., 2018. Characteristics of Bay of Bengal monsoon depressions in the 21st century. Geophys. Res. Lett. 45 (13), 6637-6645. https://doi.org/10.1029/2018GL078756.
  • [81] Rhoads, D. C., Young, D. K., 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts II. Reworking by Molpadia oolitica (Holothuroidea). Mar. Biol. 11, 255-261. https://doi.org/10.1007/BF00401273.
  • [82] Rhoads, D. C., Germano, J. D., 1982. Characterization of organism-sediment relations using sediment profile imaging: an efficient method of remote ecological monitoring of the seafloor (RemotsTM systems). Mar. Ecol. Prog. Ser. 8 (2), 115-128.
  • [83] Ronan Jr, T. E., 1977. Formation and paleontologic recognition of structures caused by marine annelids. Paleobiology. 3 (4), 389-403.
  • [84] Rosenberg, R., 2001. Marine benthic faunal successional stages and related sedimentary activity. Sci. Mar. 65, 107-119.
  • [85] Rosenfeld, J. S., 2002. Functional redundancy in ecology and conservation. Oikos. 98 (1), 156-162. https://doi.org/10.1034/j.1600-0706.2002.980116.x.
  • [86] Rudra, K., 2018. The Sundarban. In: Rudra, K. (Ed.), Rivers of the Ganga-Brahmaputra-Meghna delta. Geography of the physical environment. Springer, Cham, 107-124. https://doi.org/10.1007/978-3-319-76544-0_8.
  • [87] Rybczyk, J. M., Day Jr., J. W., 2013. Global climate change and estuarine systems. In: Day, Jr., J. W., Crump, B. C., Kemp, W. M., Yáñez-Arancibia, A. (Eds.), Estuarine Ecology, 501-518.
  • [88] Saha, S. B., Bhattacharyya, S. B., Mitra, A., Pandey, B. K., Choudhury, A., 2001. Physicochemical characteristics in relation to pollution and phytoplankton production potential of a brackish water ecosystem of Sundarbans in West Bengal. Trop. Ecol. 42 (2), 199-205.
  • [89] Sigala, K., Reizopoulou, S., Basset, A., Nicolaidou, A., 2012. Functional diversity in three Mediterranean transitional water ecosystems. Estuar. Coast. Shelf Sci. 110, 202-209. https://doi.org/10.1016/j.ecss.2012.06.002.
  • [90] Southern, R., 1921. Polychaeta of the Chilka Lake and also of fresh and brackish waters in other parts of India. Mem. Indian Mus. 5, 563-659.
  • [91] Stanley, D. J., Hait, A. K., 2000. Holocene depositional patterns, neotectonics and Sundarban mangroves in the western Ganges-Brahmaputra delta. J. Coast. Res. 16 (1), 26-39. https://doi.org/10.2307/4300009.
  • [92] Strickland, J. D. H., Parsons, T. R., 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa, 328 pp.
  • [93] Taupp, T., Wetzel, M. A., 2019. Functionally similar but taxonomically different: Benthic communities in 1889 and 2006 in an industrialized estuary. Estuar. Coast. Shelf Sci. 217, 292-300. https://doi.org/10.1016/j.ecss.2018.11.012.
  • [94] Thistle, D., 1981. Natural physical disturbances and communities of marine soft bottoms. Mar. Ecol. Prog. Ser. 6 (2), 223-228.
  • [95] Tillin, H. M., Hiddink, J. G., Jennings, S., Kaiser, M. J., 2006. Chronic bottom trawling alters the functional composition of benthic invertebrate communities on a sea-basin scale. Mar. Ecol. Prog. Ser. 318, 31-45. https://doi.org/10.3354/meps318031.
  • [96] Trivedi, S., Zaman, S., Chaudhuri, T. R., Pramanick, P., Fazli, P., Amin, G., Mitra, A., 2016. Inter-annual variation of salinity in Indian Sundarbans. Indian J. Geo-Mar. Sci. 45 (3), 410-415.
  • [97] Tyler, E. H., Somerfield, P. J., Berghe, E. V., Bremner, J., Jackson, E., Langmead, O., Palomares, M. L. D., Webb, T. J., 2012. Extensive gaps and biases in our knowledge of a well-known fauna: implications for integrating biological traits into macroecology. Glob. Ecol. Biogeogr. 21 (9), 922-934. https://doi.org/10.1111/j.1466-8238.2011.00726.x.
  • [98] Vega, M., Pardo, R., Barrado, E., Debán, L., 1998. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res. 32 (12), 3581-3592. https://doi.org/10.1016/S0043-1354(98)00138-9.
  • [99] Wilson, J. G., Fleeger, J. W., 2013. Estuarine benthos. In: Day, Jr., J. W., Crump, B. C., Kemp, W. M., Yáñez-Arancibia, A. (Eds.), Estuarine Ecology, 303-326.
  • [100] Wortmann, J., Hearne, J. W., Adams, J. B., 1998. Evaluating the effects of freshwater inflow on the distribution of estuarine macrophytes. Ecol. Modell. 106 (2-3), 213-232. https://doi.org/10.1016/S0304-3800(97)00197-X.
  • [101] Wouters, J. M., Gusmao, J. B., Mattos, G., Lana, P., 2018. Polychaete functional diversity in shallow habitats: Shelter from the storm. J. Sea Res. 135, 18-30. https://doi.org/10.1016/j.seares.2018.02.005.
  • [102] Wu, R. S. S., Shin, P. K. S., 1997. Sediment characteristics and colonization of soft-bottom benthos: A field manipulation experiment. Mar. Biol. 128, 475-487. https://doi.org/10.1007/s002270050114.
  • [103] Zhang, Q., Li, J., Hu, G., Zhang, Z., 2019. Bioturbation potential of a macrofaunal community in Bohai Bay, northern China. Mar. Pollut. Bull. 140, 281-286. https://doi.org/10.1016/J.MARPOLBUL.2019.01.063.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c54887b-aead-44d0-bb2c-0d85339deebc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.