PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of the Handysurf E-35B electronic profilometer for the study of weathering micro-relief in glacier forelands in SE Iceland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents the results of weathering micro-roughness measurements performed with the use of a Handysurf E-35B electronic profilometer, a new tool in geomorphological studies. Measurements were performed on glacially abraded basaltic surfaces within the Little Ice Age (LIA) glacial forelands of Hoffelsjökull, Fláajökull, Skálafellsjökull and Virkisjökull in Iceland. Results show a statistical increase in micro-roughness in a direction from the glacial termini to LIA moraines. However, a major change in the micro-roughness of basaltic surfaces only occurs during the first 80 to 100 years since the onset of subaerial weathering. Increase in rock surface micro-roughness is accompanied by an increase in weathering rind thickness and a decrease in Schmidt hammer R-values. Micro-roughness measurements with the use of the Handysurf E-35B can provide insights into initial rates of rock surface micro-relief development. The use of this instrument as a relative dating technique is limited to fine-grained rocks and decadal time-scales of weathering because of the limited range of measureable micro-relief amplitude.
Rocznik
Strony
389--401
Opis fizyczny
Bibliogr. 55 poz., fot., rys., tab.
Twórcy
autor
  • Faculty of Geography and Regional Studies, University of Warsaw, Krakowskie Przedmieście 30, 00-927 Warsaw, Poland
Bibliografia
  • 1. Aa, A.R. and Sjåstad, J.A. 2000. Schmidt hammer age evaluation of the moraine sequence in front of Bøyabreen, western Norway. Norsk Geologisk Tidskrift, 80, 27–32.
  • 2. Ahlmann, H.W. and Thorarinsson, S. 1937: Previous investigations of Vatnajökull, Marginal oscillations of its Outlet-Glaciers and General Description of its Morphology. Geografiska Annaler, 19, 176–211.
  • 3. André, M-F. 2002. Rates of post-glacial rock weathering on glacially scoured outcrops (Abisko-Riksgränsen area, 688 N). Geografiska Annaler, 84A, 139–150.
  • 4. Bradwell, T. 2001. A new lichenometric dating curve for southeast Iceland. Geografiska Annaler, 83 A, 91–101.
  • 5. Bradwell, T. 2004. Lichenometric dating in southeast Iceland: the size-frequency approach. Geografiska Annaler, 86 A, 31–41.
  • 6. Bradwell, T., Dugmore, A.J. and Sudgen, D.E. 2006. The Little Ice Age glacier maximum in Iceland and the North Atlantic Oscillation: evidence from Lambatungnajökull, southeast Iceland. Boreas, 35, 61–80.
  • 7. Bradwell, T., Sigurðsson, O. and Everest, J. 2013. Recent, very rapid retreat of a temperate glacier in SE Iceland. Boreas, 42, 959–973.
  • 8. Carroll, T. 1974. Relative age dating techniques and a late Quaternary chronology, Arikaree Cirque, Colorado. Geology, 2, 321–325.
  • 9. Chenet, M., Roussel, E., Jomelli, V., Grancher, D. and Cooley, D. 2010. Asynchronous Little Ice Age glacial maximum extent in southeast Iceland. Geomorphology, 114, 253–260.
  • 10. Chenet, M., Roussel, E., Jomelli, V., Grancher, D. and Cooley, D. 2011. A response to the commentary of M. Dąbski about the paper ‛Asynchronous Little Ice Age glacial maximum extent in southeast Iceland’ (Geomorphology (2010), 114, 253–260). Geomorphology, 128, 103–104.
  • 11. Chinn, T.J. 1981. Use of rock weathering-rind thickness for Holocene absolute age-dating in New Zealand. Arctic and Alpine Research, 13, 33–45.
  • 12. Chlebicki, A. 2007. Nielichenizujące grzyby epi- i endolityczne (litobionty). Wiadomości Botaniczne, 51, 5–13.
  • 13. Dahl, R. 1966. Block fields, weathering pits and tor-like forms. Geografiska Annaler, 48 (A), 55–85.
  • 14. Dąbski, M. 2002. Age of the Fláajökull Moraine Ridges (SE Iceland). Critical Approach to Use of Lichenometry. Miscellanea Geographica, 10, 67–76.
  • 15. Dąbski, M. 2005. Small-scale Sorted Nets on Glacial Till, Fláajökull (Southeast Iceland) and Elisbreen (Northwest Spitsbergen). Permafrost and Periglacial Processes, 16, 305–310.
  • 16. Dąbski, M. 2007. Testing the size-frequency-based lichenometric dating curve on Fláajökull moraines (SE Iceland) and quantifying lichen population dynamics with respect to stone surface aspect. Jökull, 57, 21–35.
  • 17. Dąbski, M. 2009. Early stages of weathering of glaciallyabraded limestone surfaces as determined by various Schmidt hammer tests; Biferten glacier forefield, Glarner Alps (Switzerland). Landform Analysis, 11, 13–18.
  • 18. Dąbski, M. 2010. A commentary to ‛Asynchronous Little Ice Age glacial maximum extent in southeast Iceland’ by Chenet et al. (Geomorphology 114 (2010) 253-260); a case of Fláajökull. Geomorphology, 120, 365–367.
  • 19. Dąbski, M. 2012. Determining rock surface micro-roughness and search for new method of relative dating of glacial landforms; a case study from Fláajökull (SE Iceland) and Biferten glacier (Swiss Alps) forefields. Landform Analysis, 21, 3–8.
  • 20. Dąbski, M. 2014. Rock surface micro−roughness, Schmidt hammer rebound and weathering rind thickness within LIA Skálafellsjökull foreland, SE Iceland. Polish Polar Research, 35, 99–114.
  • 21. Dąbski, M. and Tittenbrun, A. 2013. Time-dependant surface deterioration of glacially abraded basaltic boulders deposited by Fláajökull, SE Iceland. Jökull, 63, 55–70.
  • 22. Dominguez-Villar, D. 2006. Early formation of gnammas (weathering pits) in a recently glaciated are of Torres del Paine, southern Patagonia (Chile). Geomorphology, 76, 137–147.
  • 23. Dorn, R.I. 2004. Case hardening. In: A.S. Goudie (Ed.), Encyclopedia of Geomorphology, vol. 1. International Association of Geomorphologists, Routledge, 118–119.
  • 24. Etienne, S. 2002. The role of biological weathering in periglacial areas: a study of weathering rinds in south Iceland. Geomorphology, 47, 75–86.
  • 25. Evans, D.J.A., Archer, S. and Wilson, D.J.H. 1999. A comparison of the lichenometric and Schmidt hammer dating techniques based on data from the proglacial areas of some Icelandic glaciers. Quaternary Science Reviews, 18, 13-41.
  • 26. Hubbard, B. and Glasser, N. 2005. Field Techniques in Glaciology and Glacial Geomorphology, pp. 350–365. Wiley; Chichister.
  • 27. Icelandic Meteorological Office 2012. Climatological data. Annual averages for selected stations [Data files]. Retrieved from http://en.vedur.is/Medaltalstoflur-txt/Arsgildi.html
  • 28. Ives, J.D. 1978. The maximum extent of Laurentide ice sheet along the east coast of North America during the last glaciation. Arctic, 31, 24–53.
  • 29. Jóhannesson, H. and Saemundsson, K. 2009. Geological Map of Iceland 1:600 000. Bedrock Geology. 1st edition, Icelandic Institute of Natural History, Garðabær.
  • 30. Kirkbridge, M.P. and Dugmore, A.J. 2001: Can lichenometry be used to date the „Little Ice Age” Glacier Maximum in Iceland? Climatic Change, 48, 151–167.
  • 31. Kirkbride, M.P. and Winkler, S. 2012. Correlation of Late Quaternary moraines: impact of climate variability, glacier response, and chronological resolution. Quaternary Science Reviews, 46, 1–29.
  • 32. Kotarba, A., Król, K. and Rutkowski, J. 2002: Zastosowanie młotka Schmidta do badania granitów tatrzańskich. In: A. Traczyk and A. Latocha (Eds), VI Zjazd Geomorfologów Polskich “Środowiska górskie – ewolucja rzeźby”, pp. 79–80, SGP, Uniwersytet Wrocławski; Wrocław.
  • 33. Landvik, J.Y. 1994. The last glaciations of Germanialand and adjacent areas, northeast Greenland. Journal of Quaternary Science, 9, 81–92.
  • 34. Matthews, J.A. and Owen, G. 2008. Endolithic lichens, rapid biological weathering and Schmidt hammer R-values on recently exposed rock surfaces: Storbreen glacier foreland, Jotunheimen, Norway. Geografiska Annaler, 90A, 287–297.
  • 35. Matthews, J.A. and Owen, G. 2011. Holocene Chemical Weathering, Surface Lowering and Rock Weakening Rates on Glacially Eroded Bedrock Surfaces in an Alpine Periglacial Environment, Jotunheimen, Southern Norway. Permafrost and Periglacial. Processes, 22, 279–290.
  • 36. Matthews, J.A. and Shakesby, R.A. 1984. The status of the Little Ice Age is southern Norway: Relative-age dating of Neoglacial moraines with Schmidt hammer and lichenometry. Boreas, 13, 333–346.
  • 37. McCarroll, D. 1989. Potential and limitations of the Schmidt hammer for relative-age dating: field tests on Neoglacial moraines, Jotunheim, Southern Norway. Arctic and Alpine Research, 21, 268–275.
  • 38. McCarroll, D. 1991. The age and origin of Neoglacial moraines in Jotunheimen, southern Norway: new evidence from weathering-based data. Boreas, 20, 283–295.
  • 39. McCarroll, D. 1992. A new instrument and techniques for the field measurement of rock surface roughness. Zeischrift für Geomorphologie, 36, 69–79.
  • 40. McCarroll, D. and Nesje, A. 1993. The vertical extend of ice sheets in Nordjord, western Norway: measuring degree of rock surface weathering. Boreas, 22, 255–265.
  • 41. McCarroll, D. and Nesje, A. 1996. Rock surface roughness as an indicator of degree of rock surface weathering. Earth Surface Processes and Landforms, 21, 963–977.
  • 42. McKinzey, K.M., Orwin, J.F. and Bradwell, T. 2004. Re-dating the moraines at Skálafellsjökull and Heinabergsjökull using different lichenometric methods: implications for the timing of the Icelandic Little Ice Age maximum. Geografiska Annaler, 86 A, 319–335.
  • 43. Nesje, A. and Dahl, S.O. 1990.: Autochtonous block fields in southern Norway: implications for the geometry, thickness, and isostatic loading of the late Weischelian Scandinavian ice sheet. Journal of Quaternary Science, 5, 225–234.
  • 44. Nicholson, D.T. 2009. Holocene microweathering rates and processes on ice-eroded bedrock, Røldal area, Hardangervidda, southern Norway. In: J. Knight and S. Harrison (Eds), Periglacial and Paraglacial Processes and Environments. Geological Society, London, Special Publications, 320, 29–50.
  • 45. Owen, G., Matthews, J.A. and Albert, P.G. 2007. Rates of Holocene chemical weathering, “Little Ice Age” glacial erosion and implications for Schmidt-hammer dating at a glacier-foreland boundary, Fåbergstølsbreen, southern Norway. The Holocene, 17, 829–834.
  • 46. Porter, S.C. 1975. Weathering rinds as a relative-age criterion: Application to subdivision of glacial deposits in the Cascad Range. Geology, 3, 101–104.
  • 47. Shakesby, A.A., Matthews, J.A. and Owen, G. 2006.: The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quaternary Science Reviews, 25, 2846–2867.
  • 48. Sigurðsson, O. 1998. Glacier variations in Iceland 1930-1995. From the database of the Icelandic Glaciological Society. Jökull, 45, 3–25.
  • 49. Snorrason, S. 1984. Mýrarjöklar og Vatnsdalur. Cand Real theses, University of Oslo.
  • 50. Thorarinsson, S. 1943. Oscillations of the Icelandic Glaciers in the last 250 years. Vatnajökull, Scientific Results of the Swedish-Icelandic Investigation 1937-38-39, Geografiska Annaler, 25, 54 pp.
  • 51. Viles, H.A. 2001. Scale issues in weathering studies. Geomorphology, 41, 63–72.
  • 52. Viles, H.A. 2012: Microbial geomorphology: A neglected link between life and landscape. Geomorphology, 157–158, 6–16.
  • 53. Viles, H.A. and Moses, C.A. 1998. Weathering nanomorphologies: their experimental production and use as indicators of carbonate stone decay. Quarterly Journal of Engineering Geology and Hydrology, 31, 347–357.
  • 54. Winkler, S. 2005. The Schmidt hammer as a relative-age dating technique: potential and limitations of its application on Holocene moraines in Mt Cook National Park, Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics, 48, 105–116.
  • 55. Yoshida, H., Metcalfe, R., Nishimoto, S., Yamamoto, H. & Katsuta, N. 2011. Weathering rind formation in buried terrace cobbles during periods of up to 300ka. Applied Geochemistry, 26, 1706–1721.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c514862-55f1-440f-ae3e-b5e4fc93f66b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.