PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evolution of Land Use/Land Cover in Mediterranean Forest Areas – A Case Study of the Maamora in the North-West Morocco

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Land use/land cover (LULC) change information is crucial for monitoring purposes, formulating strategies, socioeconomic progress, and decision-making. The main objective of this study was to analyze and quantify the changes in land use as well as land cover patterns within the Maamora forest in Morocco, and to identify the key factors that influenced its trend from 1989 to 2022. In this study, multispectral remote sensing (RS) data were employed to detect land cover changes in the Maamora forest using Landsat images for the years 1989, 1999, 2009, 2019 and 2022. The maximum likelihood classification (MLC) method was applied to classify the Landsat images using ArcMap 10.4 software to analyze the current state of the study area. Seven LULC classes (cork oak, eucalyptus, pine, acacia, bare land, daya, and others) were successfully classified, achieving overall accuracies surpassing 86% and Kappa coefficients greater than 0.85 for all selected dates. The results of the land use/land cover change detection indicate a decrease in the cork oak area from 60.71% to 44.42%, along with an increase in the eucalyptus area from 18.11% to 39.31%. Moreover, the pine, acacia, bare land, daya, and other classes went from 17.22, 2.80, 0.95, 0.05, and 0.12% to 4.58, 0.02, 10.84, 0.34, and 0.48% respectively. Indeed, from 1989 to 2022, around 50.84% of the study area’s surface remained unchanged, whereas 49.16% underwent changes, transitioning to other land cover classes or endured degradation. This research underscored the anthropogenic transformation of the Maamora woodland, which has led to the degradation of its natural resources. Broadly, these findings can serve as foundational data for future research endeavors and offer valuable insights to concentrate on the key factors driving forest degradation in order to inform the development of interventions aimed at preserving the sustainability of natural species and the overall ecosystem.
Twórcy
  • Biodiversity, Ecology and Genom Laboratory, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, Agdal, Rabat, Morocco
  • Biodiversity, Ecology and Genom Laboratory, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, Agdal, Rabat, Morocco
  • Biodiversity, Ecology and Genom Laboratory, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta, BP, Agdal, Rabat, Morocco
Bibliografia
  • 1. Aafi, A. 2007. Study of plant diversity of cork oak ecosystem in the maamora forest. Thèse de doctorat d’Etat Es-Science Agronomique, Institut agronomique et vétérinaire Hassan II, Rabat, 190.
  • 2. Aafi A., Achhal El Kadmiri A., Benabid A., Rouchdi M. 2005. Richesse et diversité floristique de la subéraie de la Maâmora (Maroc). Acta Botanica Malacitana, 30, 127–138. Available at: http://www.bioveg.uma.es/abm/volumenes/vol30/08.mamora.pdf
  • 3. Achard F., Eva H.D., Stibig H.J., Mayaux P., Gallego J., Richards T., Malingreau J.P. 2002. Determination of deforestation rates of the world’s humid tropical forests. Science 297(5583), 999–1002. https://doi.org/10.1126/science.10706
  • 4. Acharki S., El Qorchi F., Arjdal Y., Amharref M., Bernoussi A., Ben Aissa H. 2022. Soil erosion assessment in Northwestern Morocco, Remote Sensing Applications: Society and Environment, Volume 25. https://doi.org/10.1016/j.rsase.2021.100663
  • 5. Agariga F., Abugre S., Appiah M. 2021. Spatiotemporal changes in land use and forest cover in the Asutifi North District of Ahafo Region of Ghana, (1986–2020). Environmental Challenges, 5, 100209. https://doi.org/10.1016/j.envc.2021.100209
  • 6. Ager A.A., Barros A.M.G., Houtman R., Seli R., Day M.A. 2020. Modelling the effect of accelerated forest management on long-term wildfire activity. Ecol. Model. 421, 108962. https://doi.org/10.1016/J.ECOLMODEL.2020.108962
  • 7. Agrillo E., Alessi N., Jiménez-Alfaro B., Casella L., Angelini P., Argagnon O., Attorre F. 2018. The use of large databases to characterize habitat types: the case of Quercus suber woodlands in Europe. Rendiconti Lincei. Scienze Fisiche e Naturali, 29(2). https://doi.org/10.1007/s12210-018-0703-x
  • 8. Atta S., Achard F., Ould-mohamedou S.O.M. 2010. Evolution récente de la population, de l’occupation des sols et de la diversité floristique sur un terroir agricole du Sud-Ouest du Niger. Science & Nature, 7(2), 119–129.
  • 9. Austin K.G., Gonzalez-Roglich M., Schaffer-Smith D., Schwantes A.M., Swenson J.J. 2017. Trends in size of tropical deforestation events signal increasing dominance of industrial-scale drivers. Environ. Res. Lett., 12(5), 054009. https://doi.org/10.1088/1748-9326/aa6a88/meta
  • 10. Benabou A., Moukrim S., Laaribya S., Aafi A., Chkhichekh A., El Maadidi A., EL Aboudi A. 2022a. Mapping ecosystem services of forest stands: Case study of Maamora, Morocco, 15(1). Geography, Environment, Sustainability, 141–149. https://DOI-10.24057/2071-9388-2021-047
  • 11. Benabou A., Moukrim S., Lahssini S., El Aboudi A., Menzou K., Elmalki M., El Madihi M., Rhazi L. 2022b. Impact of the climate change on potential distribution of Quercus suber in the conditions of North Africa. Biosystems Diversity, 30(3), 289– 294. https://doi.org/10.15421/012231
  • 12. Bertacchi, A. 2023. Cork oak (Quercus suber) in the dynamism of a forest landscape shaped by fire on Monte Pisano (Tuscany N-W, Italy). Plant Sociology 60(2), 57–69. https://doi.org/10.3897/pls2023602/04
  • 13. Bonan G.B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449. https://doi.org/10.1126/
  • 14. Bunyangha J., Majaliwa M.J.G., Muthumbi A.W., Gichuki N.N., Egeru A. 2021. Past and future land use/land cover changes from multi-temporal Landsat imagery in Mpologoma catchment, eastern Uganda. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2021.02.003
  • 15. Butt A., Shabbir R., Ahmad S.S., Aziz N. 2015. Land use change mapping and analysis using Remote Sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 251– 259. http://dx.doi.org/10.1016/j.ejrs.2015.07.003
  • 16. Caldas F.B., Moreno-Saiz J.C. 2011. Astragalus algarbiensis. The IUCN red list of threatened species. http://www.iucnredlist.org/details/summary/162248/1
  • 17. Campos P., Daly-Hassen H., Oviedo J.L., Ovando P., Chebil A. 2008. Accounting for single and aggregated forest incomes: Application to public cork oak forests in Jerez (Spain) and Iteimia (Tunisia). Ecological Economics, 65(1), 76–86. https://doi.org/10.1016/j.ecolecon.2007.06.00
  • 18. Chen C., Liang J., Xie F., Hu Z., Sun W., Yang G., Yu J., Chen L., Wang L., Wang L., Chen H., He X., Zhang Z. 2022. Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China, International Journal of Applied Earth Observation and Geoinformation, 107. https://doi.org/10.1016/j.jag.2022.102711
  • 19. Cherki, K. 2013. Analyse de la répartition spatiale des incendies de forêt en fonction des facteurs anthropiques, écologiques et biophysiques. Le cas de la forêt de la Mâamora (Maroc septentrional) Études caribéennes, 20. https://doi.org/10.4000/etudescaribeennes.10978
  • 20. Chowdhury Md.S., Hafsa B. 2022. Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2022.e02151
  • 21. Congalton R.G., Green K. 2019. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC press.
  • 22. Coppin P., Jonckheere I., Nackaerts K., Muys B., Lambin E. 2004. Digital change detection methods in ecosystem monitoring: a review. Int. J. Remote Sens., 25(9), 1565–1596.
  • 23. Corgne, S. 2014. Etudes des changements d’occupation et d’usage des sols en contexte agricole par télédétection et fusion d’information. Thèse de doctorat de Géographie, Université de Rennes, 2, 6.
  • 24. Das N., Mondal P., Sutradhar S., Ghosh R. 2021. Assessment of variation of land use/land cover and its impact on land surface temperature of Asansol subdivision. Egypt. J. Remote Sens. Space Sci. 24(1), 131–149. https://doi.org/10.1016/j.ejrs.2020.05.001
  • 25. El Boukhari E.M., Brhadda N. Gmira N. 2015. A retrospective insight on the management history and the main results of cork oak (Quercus suber L.) regeneration in Maamora (Western Morocco). International Research Journal of Multidisciplinary Science, 1, 30–37.
  • 26. El Hachimi, H. 2010. Cartographie et état des lieux des périmètres de régénération du chêne liège dans la subéraie de la Maamora, mémoire de 3ème cycle, Ecole Nationale Forestière d’Ingénieurs, 77.
  • 27. FAO, 2015a. Soil Functions. Soils Deliver Ecosystem Sevices that Enable Life on Earth - Infographics. Available at: http://www.fao.org/resources/infographics/infographics-details/en/c/284478/
  • 28. FAO, 2015b. Plan Bleu pour l’Environnement et le Développement en méditerranée, Optimiser la production des biens et services par les écosystèmes boisés méditerranéens dans un contexte de changements globaux; Rapport technique: Analyse de vulnérabilité au changement climatique du couvert forestier Forêt de la Maâmora (Maroc) 124.
  • 29. Fennane M., Rejdali M. 2015. The world largest cork oak maamora forest: Challenges and the way ahead. Flora Mediterranea, 25, 277–285. http://www.herbmedit.org/flora/FL25SI_277-286.pdf
  • 30. Foley J.A., DeFries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Helkowski J.H. 2005. Global consequences of land use. Science, 309(5734), 570–574. http://dx.doi.org/10.1126/science.1111772
  • 31. García L.E., Rodríguez D.J., Wijnen M., Pakulski I. 2016. Earth observation for water resources management: current use and future opportunities for the water sector. World Bank Group, Washington, DC.
  • 32. Gauquelin T., Michon G., Joffre R., Duponnois R., Génin D., Fady B., Bou Dagher-Kharrat M., Derridj A., Slimani S., Badri W., Alifriqui M., Auclair L., Simenel R., Aderghal M., Baudoin E., Galiana A., Prin Y., Sanguin H., Fernandez C., Baldy V. 2016. Mediterranean forests, land use and climate change: a social-ecological perspective, Reg. Environ. Change. http://dx.doi.org/10.1007/s10113-016-0994-3
  • 33. Hammoudi, A. 2002. La subéraie: biodiversité et paysage – Le Maroc, Actes du colloque Vivexpo. Inst. Médit. du liège. Vivés France, 101, 63–66, 63.
  • 34. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A.A., Tyukavina A., Kommareddy A. 2013. High‐resolution global maps of 21st‐century forest cover change. Science, 342(6160), 850–853. http://dx.doi.org/10.1126/science.1244693
  • 35. Hatten, J., Liles G. 2019. A “healthy” balance – The role of physical and chemical properties in maintaining forest soil function in a changing world. Developments in Soil Science, 373–396. doi:10.1016/b978-0-444-63998-1.00015-x.
  • 36. Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification, 2014a. Etude de base et gestion antérieure de la forêt de la Maamora, révision de l’étude d’aménagement de la forêt de la Maamora, 137.
  • 37. Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification, 2014b. Etat actuel et résultats d’inventaire, révision de l’étude d’aménagement de la forêt de la Maamora, 101.
  • 38. Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification, 2014c. Etude de régénération, révision de l’étude d’aménagement de la forêt de la Maamora, 38.
  • 39. Herold M., Hirata Y., Van Laake P., Asner G., Heymell V., Román-cuesta R.M. 2011. A review of methods to measure and monitor historical forest degradation. Victoria, 62, 1–31.0
  • 40. Hlovor A.K.D., Adjonou K., Dangbo F.A., Abotsi K.E., Afelu B., Kokou K. 2021. Dynamique du couvert forestier dans la partie méridionale des monts Togo, Afrique de l’ouest, 300–313. 41. Huang L., Wang B., Niu X., Gao P., Song Q. 2019. Changes in ecosystem services and an analysis of driving factors for China’s Natural Forest Conservation Program. Ecol. Evol., 9(7), 3700–3716. https://doi.org/10.1002/ece3.4925
  • 42. Islam M.M., Borgqvist H., Kumar L. 2019. Monitoring mangrove forest landcover changes in the coastline of Bangladesh from 1976 to 2015. Geocarto Int., 34(13), 1458–1476. https://doi.org/10.1080/10106049.2018.1489423
  • 43. Izadi S., Sohrabi H. 2021. Chapter 14 – Using bayesian kriging and satellite images to estimate aboveground biomass of Zagros mountainous forests. Forest Resources Resilience and Conflicts, 193–201.
  • 44. Kalinaki K., Malik O.A., Ching Lai D.T., Sukri R.S., Abdul Wahab R.BH. 2023. Spatial-temporal mapping of forest vegetation cover changes along highways in Brunei using deep learning techniques and Sentinel-2 images. Ecological Informatics, 77. https://doi.org/10.1016/j.ecoinf.2023.102193
  • 45. Kashaigili J.J., Majaliwa A.M. 2010. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania. Phys. Chem. Earth, Parts A/B/C, 35 (13–14), 730–741. https://doi.org/10.1016/j.pce.2010.07.030
  • 46. Khadijat A., Anthony T., Ganiyu O., Bolarinwa S. 2021. Forest cover change in Onigambari reserve, Ibadan, Nigeria: Application of vegetation index and Markov chain techniques. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2021.08.004
  • 47. Kumar S., Shwetank, and Jain K. 2020. A MultiTemporal Landsat Data Analysis for Land-use/ Land-cover Change in Haridwar Region using Remote Sensing Techniques. Procedia Computer Science, 171, 1184–1193. https://doi:10.1016/j.procs.2020.04.127
  • 48. Kumar M., Mondal I., Pham Q.B. 2021. Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophys., 69, 561–577. https://doi.org/10.1007/s11600-021-00551-3
  • 49. Lahssini S., Lahlaoi H., Mharzi Alaoui H., Hlal E.A., Bagaram M., Ponette Q. 2015. Predicting Cork Oak Suitability in Maâmora Forest Using Random Forest Algorithm. Journal of Geographic Information System, 7, 202–210. http://dx.doi.org/10.4236/jgis.2015.72017
  • 50. Lancellotti E., Franceschini A. 2012. Ectomycorrhizal fungal communities in Quercus suber ecosystems, in: M. Hafidi, R. Duponnois (Eds.), The mycorrhizal symbiosis in Mediterranean environment: importance in ecosystem stability and in soil rehabilitation strategies, Nova Science Publishers, Marrakech, Maroc, 71–85.
  • 51. Lea C., Curtis A.C. 2010. Thematic accuracy assessment procedures: National Park Service Vegetation Inventory, version 2.0. Natural Resource Report NPS/2010/NRR––2010/204, National Park Service, Fort Collins, Colorado, USA.
  • 52. Maghnia F., Abbas Y., Mahé F., Prin Y., El Ghachtouli N., Duponnois R., Sanguin H. 2019. The rhizosphere microbiome: A key component of sustainable cork oak forests in trouble. Forest Ecology and Management, 434, 29–39. https://doi.org/10.1016/j.foreco.2018.12.002
  • 53. Maghnia F., Sanguin H., Abbas Y., Verdinelli M., Kerdouh B., ElGhachtouli N., Lancellotti E., Yakhlef S.B., Duponnois R. 2017. Impact of cork oak management on the ectomycorrhizal fungal diversity associated with Quercus suber in the Maamora forest, (Morocco), C.R. Biologies xxx, 298–305. https://doi.org/10.1016/j.crvi.2017.04.001
  • 54. Malki F., Al Karkouri J., Sabir M., El Mderssa M., Dallahi Y. 2022. Contribution of geomatics tools to the study of the spatio-temporal evolution of forest stands of the Maamora forest in the face of global changes. E3S Web of Conferences, 337, 01001. https://doi.org/10.1051/e3sconf/202233701001
  • 55. Manonmani R., Suganya G. 2010. Remote sensing and GIS application in change detection study in urban zone using multi temporal satellite. International journal of Geomatics and Geosciences, 1(1), 60–65.
  • 56. M.A.T.E.U.H, 2002. Etude Nationale sur la Biodiversité (Rapport de synthèse), Maroc, 215.
  • 57. Moukrim S., Benabou A., Lahssini S., Aafi A., Chkhichekh A., Moudden F., Ben Bammou M., El Aboudi A., Laaribya S. 2022. Spatio-temporal analysis of North African forest cover dynamics using time series of vegetation indices – case of the Maamora forest (Morocco). Biosystems Diversity, 30(4), 372–379. https://doi.org/10.15421/012236
  • 58. Mounir, F. 2002. Conception d’un système d’information géographique pour la planification et la gestion forestière au Maroc;Intégration des Critères et Indicateurs de Développement Durable ; Application à Maamora Forest. Thèse de Doctorat, UCL, Belgique.
  • 59. Noumonvi K.D., Mounir F., Belghazi B. 2017. Spatial Multi-Criteria Based Analysis to Assess Dynamics and Vulnerability of Forest Ecosystems to Global Changes: Case of Maamora Forest-Morocco. Open Access Library Journal, 4, e3889. https://doi.org/10.4236/oalib.1103889
  • 60. Noumonvi, K.D. 2015. Application de la modélisation spatiale multifactorielle pour l’évaluation de la dynamique et la vulnérabilité des écosystèmes forestiers face aux changements globaux: Cas de la forêt de Maâmora, mémoire de 3ème cycle, Ecole Nationale Forestière d’Ingénieurs, 114.
  • 61. Oubrahim, H. 2015. Estimation et cartographie du stock de carbone dans l’écosystème de quercus suber de la Mamora occidentale (cantons A et B) et estimation de son stock d’éléments nutritifs, Thèse de doctorat, Université Mohammed V Faculté des sciences Rabat 202.
  • 62. Petropoulos G.P., Kalivas D.P., Georgopoulou I.A., Srivastava P.K. 2015. Urban vegetation cover extraction from hyperspectral imagery and geographic information system spatial analysis techniques: case of Athens, Greece. Journal of Applied Remote Sensing, 9(1), 096088. https://doi.org/10.1117/1.JRS.9.096088
  • 63. Pontius, Jr.R.G. 2000. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and remote Sensing., 66(8), 1011–1016.
  • 64. Seenipandi K., Ramachandran K.K., Ghadei P., Shekhar S. 2021. 16-seasonal variability of sea surface temperature in Southern Indian coastal water using Landsat 8 OLI/TIRS images. Remote sensing of ocean and coastal environments. Earth Observation, Elsevier, 277–295. https://doi.org/10.1016/ B978-0-12-819604-5.00016-0
  • 65. Selvi F., Carrari E., Coppi A. 2016. Impact of pine invasion on the taxonomic and phylogenetic diversity of a relict Mediterranean forest ecosystem. Forest Ecology and Management, 367, 1–11. https://doi.org/10.1016/j.foreco.2016.02.013
  • 66. Thien B.B., Phuong, V.T. 2023. Using landsat satellite imagery for assessment and monitoring of longterm forest cover changes in Dak Nong Province, Vietnam. Geographica Pannonica, 27, 1, 69–82. https://doi.org/10.5937/gp27-41813
  • 67. Tsegaye N.T., Dibaba W.T., Gemeda D.O. 2023. Spatiotemporal forest cover change and its implication for environmental sustainability in Dedo district of Jimma zone, southwest Ethiopia. Environmental and Sustainability Indicators 19–100262. https://doi.org/10.1016/j.indic.2023.100262
  • 68. Touhami I., Chirino E., Aouinti H., El Khorchani A., Elaieb M.T., Khaldi A., Nasr Z. 2019. Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia. Journal of Forestry Research, 31(5), 1461–1477. https://doi.org/10.1007/s11676-019-00974-1
  • 69. UNFCCC, 2014. Key Decisions Relevant for Reducing Emissions From Deforestation and Forest Degradation in Developing Countries (REDD+). Framew. Conv. Clim. Chang., 44.
  • 70. Verma P., Raghubanshi A., Srivastava P.K., Raghubasni A.S. 2020. Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Model. Earth Syst. Environ., 6, 1045–1059. https://doi.org/10.1007/s40808-020-00740-x
  • 71. Vitousek P.M., Mooney H.A., Lubchenco J., Melillo J.M. 2008. Human domination of Earth’s ecosystems. Urban Ecol. Int. Perspect. Interact. Between Humans Nat., 277, 3–13. https://doi.org/10.1007/978-0-387-73412-5_1
  • 72. Wu C., Du B., Cui X., Zhang L. 2017.A post-classification change detection method based on iterative slow feature analysis and Bayesian soft fusion. Remote Sensing of Environment, 199, 241–255. http://dx.doi.org/10.1016/j.rse.2017.07.009
  • 73. Yan X., Wang J., Liu X., Zhao H., Wu Y. 2022. Mining the drivers of forest cover change in the upper Indus Valley, high Asia region from 1990 to 2020. Ecological Indicators, 144, 109566. https://doi.org/10.1016/j.ecolind.2022.109566
  • 74. Yirsaw E., Wu W., Temesgen H., Bekele B. 2017. Socioeconomic drivers of spatiotemporal land use/land cover changes in a rapidly urbanizing area of China, the Su-Xi-Chang region. Appl. Ecol. Environ. Res. 15, 809–827. https://doi.org/10.15666/aeer/1504_809827
  • 75. Zerouali B., Santos C.A.G., do Nascimento T.V.M., Da Silva R.M. 2022. A cloud-integrated GIS for forest cover loss and land use change monitoring using statistical methods and geospatial technology over northern Algeria, Journal of Environmental Management, 341. https://doi.org/10.1016/j.jenvman.2023.118029
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c470861-98d4-452f-9ebc-48a1cc68951e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.