PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

X-ray diffraction study of the elastic properties of jagged spherical CdS nanocrystals

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, jagged spherical CdS nanocrystals have been synthesized by chemical method to study their elastic properties. The synthesized CdS nanocrystal has been characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The transmission electron microscope images show that the average size of the nanocrystal is 100 nm approximately. X-ray diffraction (XRD) study confirms that the CdS nanocrystals are in cubic zinc blende structure. The size calculated from the XRD is consistent with the average size obtained from the TEM analysis. The XRD data have been analyzed to study the elastic properties of the jagged spherical CdS nanocrystals, such as intrinsic strain, stress and energy density, using Williamson-Hall plot method. Williamson-Hall method and size-strain plot (SSP) have been used to study the individual effect of crystalline size and lattice strain on the peak broadening of the jagged spherical CdS nanocrystals. Size-strain plot (SSP) and root mean square (RMS) strain further confirm the results obtained from W-H plots.
Wydawca
Rocznik
Strony
271--278
Opis fizyczny
Bibliogr. 55 poz., tab., rys.
Twórcy
  • Nano-Physics & Nanotechnology Research Lab., Department of Physics, Tripura University (A Central University), Suryamaninagar, Tripura-799022, India
autor
  • Nano-Physics & Nanotechnology Research Lab., Department of Physics, Tripura University (A Central University), Suryamaninagar, Tripura-799022, India
autor
  • Nano-Physics & Nanotechnology Research Lab., Department of Physics, Tripura University (A Central University), Suryamaninagar, Tripura-799022, India
Bibliografia
  • [1] LANDES C.F., LINK S., BABAK NIKOOBAKHTM.B.M., EL-SAYED M.A., Pure Appl. Chem., 74 (9) (2002), 1675.
  • [2] PINNA N., WEISS K., URBAN J., PILENI M.P., Adv. Mater., 13 (4) (2001), 261.
  • [3] CHAE W.S., SHIN H.W., LEE E.S., SHIN E.J., JUNG J.S., KIM Y.R., J. Phys. Chem. B, 109 (2005), 6204.
  • [4] BURDA C., CHEN X., NARAYANAN R., EL-SAYED M.A., Chem. Rev., 105 (2005), 1025.
  • [5] MANNA L., MILLIRON D.J., MEISEL A., SCHER E.C., ALIVISATOS A.P., Nature Mater., 2 (2003), 382.
  • [6] CAO H., WANG G., ZHANG S., ZHANG X., RABINOVICH D., Inorg. Chem., 45 (2006), 5103.
  • [7] PANDEY G., DIXIT S., J. Phys. Chem. C, 115 (2011), 17633.
  • [8] GARCIA M.A., MERINO J.M., PINEL E.F., QUESADA A., VENTA J. DE LA, GONZALEZ M.L.R., CASTRO G.R., CRESPO P., LLOPIS J., GONZA´LEZ-CALBET J.M., HERNANDO A., Nano Lett., 7 (6) (2007), 1489.
  • [9] TACHIKAWA S., NOGUCHI A., TSUGE T., HARA M., ODAWARA O., WADA H., Materials, 4 (2011), 1132.
  • [10] DEMIR R., GODE F., Chalcogenide Lett., 12 (2) (2015),43.
  • [11] BORAH J.P., SARMA K.C., Acta Phys. Pol. A, 114 (4) (2008), 713.
  • [12] SHARMA M., KUMAR S., PANDEY O.P., J. Nanopart. Res., 12 (2010), 2655.
  • [13] BEZDETKO Y.S., KLYUEV V.G., Proc. Nap., 3 (2014), 01PCSI03.
  • [14] HAO E., ANDERSON N.A., ASBURY J.B., LIAN T., J. Phys. Chem. B, 106 (2002), 10191.
  • [15] AMELIA M., FLAMINI R., LATTERINI L., Langmuir, 26 (12) (2010), 10129.
  • [16] MURAKOSHI K., HOSOKAWA H., SAITOH M., WADA Y., SAKATA T., MORI H., SATOH M., YANAGIDA S., J. Chem. Soc. Faraday T., 94 (4) (1998), 579.
  • [17] BANERJEE R., JAYAKRISHNAN R., AYYUB P., J. Phys.: Condens. Mater., 12 (2000), 10647.
  • [18] LI L., YANG X., GAO J., TIAN H., ZHAO J., HAGFELDT A., SUN L., J. Am. Chem. Soc., 133 (2011), 8458.
  • [19] DEMIR R., OKUR S., S¸EKER M., Indian Eng. Chem. Res., 51 (2012), 3309.
  • [20] QIAN J., YAN S., XIAO Z., J. Colloid Interf. Sci., 366 (2012), 130.
  • [21] MARTÍNEZ-ALONSO C., RODRÍGUEZ-CASTAÑEDA C.A., MORENO-ROMERO P., CORIA-MONROY C.S., HU H., Int. J. Photoenergy, 2014 (2014), 453747.
  • [22] KUMAR L., DHAWAN S.K., KUMAR M., KAMALASANANM.N., CHANDRA S., IJPAP, 41 (2003), 641.
  • [23] SUN W., ZHONG J., ZHANG B., JIAO K., Anal. Bioanal. Chem., 389 (2007), 2179.
  • [24] GONÇALVES L.F.F.F., KANODARWALA F.K., STRIDE J.A., SILVA C.J.R., GOMES M.J.M., Opt. Mater., 36 (2013), 186.
  • [25] RAJ F.M., RAJENDRAN A.J., Int. J. Innov. Res. Sci. Eng. Tech., 4 (1) (2015), 56.
  • [26] IKHMAYIES S.J., Int. J. Mater. Chem., 3(2) (2013), 28.
  • [27] URBIOLA I.R.C., MARTÍNEZ J.A.B., BORJA J.H., GARCÍA C.E P., BON R.R., VOROBIEV Y.V., Energy Proc., 57 (2014), 24.
  • [28] SUN S.Q., LI T., Cryst. Growth Des., 7 (11) (2007), 2367.
  • [29] QI W.H., WANG M.P., XU G.Y., J. Mater. Sci. Lett., 22 (2003), 1333.
  • [30] QI W.H., WANG M.P., J. Nanoparticle Res., 7 (2005), 51.
  • [31] UNGAR T., J. Mater. Sci., 42 (2007), 1584.
  • [32] CULLITY B.D., DENNIS B., Elements of X-ray diffraction, 2nd ed., Addision-Wesley Publishing Company Inc., 1978.
  • [33] CHANDEL S., ANJAN P.R., VALLAMATTOM A.J., NAMPOORI V.P.N., RADHAKRISHNAN P., International Conference on Fiber Optics and Photonics, OSA 2012.
  • [34] DEY P.C., DAS R., J. Lumin., 183 (2017), 368.
  • [35] UVAROV V., POPOV I., Mater. Charact., 58 (2007), 883.
  • [36] DAS R., SARKAR S., Opt. Mater., 48 (2015), 203.
  • [37] DAS R., SARKAR S., Curr. Sci., 109 (4) (2015), 775.
  • [38] DAS R., NATH S.S., BHATTACHARJEE R., Physica E,43 (1) (2010), 224.
  • [39] ZAK A.K., MAJID W.H.ABD., ABRISHAMI M.E., YOUSEFI R., Solid State Sci., 13 (2011), 251.
  • [40] PRABHU Y.T., RAO K.V., SAI KUMAR V.S., KUMARI B.S., World J. Nano Sci. Eng., 4 (2014), 21.
  • [41] JACOB R., ISAC J., Int. J. Chem. Studies, 2 (5) (2015), 12.
  • [42] SENTHIL SARAVANAN M.S., SIVAPRASAD K., SUSILA P., KUMARESH BABU S.P., Physica B, 406 (2011), 165.
  • [43] BIRKHOLZ M., Thin film analysis by X-ray scattering, Wiley-VCH Verlag GmbH and Co., KGaA, Weinheim, 2006.
  • [44] VENKATESWARLU K., BOSE A.C., RAMESHBABU N., Physica B, 405 (20) (2010), 4256.
  • [45] SIVAKAMI R., DHANUSKODI S., KARVEMBU R., Spectrochim. Acta Part A, 152 (2016), 43.
  • [46] YAN Z., VINCENT J., Sci. China-Phys. Mech. Astron., 56 (4) (2013), 694.
  • [47] LALENA J.N., CLEARY D.A., Principles of Inorganic Materials Design, 2nd ed., JohnWiley & Sons, Inc. Publication, Hoboken, New Jersey, 2010.
  • [48] CAZZANI A., ROVATI M., Int. J. Solids Struct., 40 (2003), 1713.
  • [49] WRIGHT K., GALE J.D., Phys. Rev. B, 70 (2004), 035211.
  • [50] VAEZI M.R., SHAH GHASSEMI S.H.M., SHOKUHFAR
  • [51] BHUSHAN B., LUO D., SCHRICKER S.R., SIGMUND W., ZAUSCHER S., Handbook of nanomaterials properties, Springer Heidelberg, New York – Dordrecht – London, 2014.
  • [52] ORTIZ A.L., SHAW L., Acta Mater., 52 (2004), 2185.
  • [53] WILSON, A.C.J., X-ray Optics, London, 1949.
  • [54] BIJU V., SUGATHAN N., VRINDA V., SALINI S.L., J. Mater. Sci., 43 (2008), 1175.
  • [55] BINDU P., THOMAS S., J. Theor. Appl. Phys., 8 (2014), 123.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c462f9c-dae4-4fab-8dc9-6f7986c9d62c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.