PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Czasowa zmienność zawartości wybranych składników rozpuszczonych w wodach gruntowych układu katenalnego na Pojezierzu Poznańskim

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Temporal Variability of Selected Dissolved Components Content in Groundwater of the Catena System of Poznań Lakeland
Języki publikacji
PL
Abstrakty
EN
This paper presents results of temporal variability of groundwater chemical composition in catena of arable Albeluvisols and Gleysols/Chernozem. The purpose of this study was to assess temporal variability of dissolved components in groundwater with particular reference to soil toposequence. The researches were carried out in the cultivated catchment area of the Przybroda Experimental Station located in the north-central part of the Poznań Lakeland (west part of Poland) within the Szamotuly Plain. Every two or four weeks from 2004 to 2006 the groundwater samples from six stationary points (wells) were collected. In groundwater samples the Ca2+, Mg2+, K+, Na+, HCO3-, SO2-4, PO43-, pH and EC were determined. Temporal variability of dissolved components in groundwater of catena was determined using the geostatistical analysis in which the semivariance is the basic function. Relations between values of semivariance and time correlation ranges were determined using the Variovin and the Surfer programmes. The purpose of this study was to evaluate the temporal variability of concentrations of the selected components dissolved in groundwater using geostatistical methods. The results of the researches indicate, that the quantity of dissolved components in groundwater was connected with a soil location in a relief and properties of soil parent materials. The groundwater of soil located higher in a catena ware characterized by smaller concentrations of the analyzed components, compared with water of lowest elements of the slope. The results show that temporal changes in the content of the analyzed components were characterized by large values of systematic variability and small values of random variability (nugget effect). Low nugget effects indicate that the temporal changes in concentration of the analyzed components were temporary correlated. Systematic variability was characterized by two temporary structures. The first concerns the systematic changes in shorter periods of time, which could be the result of groundwater inflow of compounds dissolved in percolating water and lateral inflow and outflow. The second was characterized by changes for longer periods, which can be related to the dynamic balance established between the weathering processes and translocation of weathering products, as well as their solubility and precipitation. Depending on a relief, the systematic variability has shown shorter temporal range for concentrations of analyzed dissolved components in groundwater (in both the first and in the second structure of semivariograms). This relationship should be associated with a shorter duration of migration of rainwater to groundwater table by decreasing the thickness of the unsaturated zone with decreasing soil position on the slope. Values of the time correlation range obtained in this study indicate that on the one hand it is possible to monitor the concentrations of the components dissolved in the groundwater in longer time intervals but on the other hand the temporal intervals depend on well location in a catena.
Rocznik
Strony
1965--1981
Opis fizyczny
Bibliogr. 26 poz., tab., rys.
Twórcy
  • Uniwersytet Przyrodniczy, Poznań
autor
  • Uniwersytet Przyrodniczy, Poznań
Bibliografia
  • 1. Adhikary P.P, Chandrasekharan H, Chakraborty D, Kamble K.: Assessment of groundwater pollution in west Delhi, India using geostatistical approach. Environmental Monitoring and Assessment 167, 599–615 (2010).
  • 2. Adhikary P.P, Dash C.J., Chandrasekharan H., Rajput T. B. S., Dubey S. K.: Evaluation of groundwater quality for irrigation and drinking using GIS and geostatistics in a peri-urban area of Delhi, India. Arabian Journal of Geosciences 5, 1423–1434 (2012).
  • 3. Banaszuk P., Wysocka-Czubaszek A., Kondratiuk P.: Spatial and temporal patterns of groundwater chemistry in the river riparian zone. Agriculture Ecosystems and Environment 107, 167–179 (2005).
  • 4. Bartoszewicz A.: Zmiany zawartości rozpuszczalnych w wodzie form niektórych składników mineralnych w glebie płowej pod kilkuletnim zadrzewieniem śródpolnych. Zesz. Probl. Post. Nauk Roln. 478, 405–411 (2001).
  • 5. Benson V.S, Van Leeuwen J.A., Stryhn H., Somers G.H.: Temporal analysis of groundwater nitrate concentrations from wells in Prince Edward Island, Canada: application of a linear mixed effects model. Hydrogeology Journal 15, 1009–1019 (2007).
  • 6. Chou C.J.: Assessing spatial, temporal, and analytical variation of groundwater chemistry in a large nuclear complex, USA. Environmental Monitoring and Assessment 119, 571–598 (2006).
  • 7. D’Agostino V., Greene E. A., Passarella G., Vurro M.: Spatial and temporal study of nitrate concentration in groundwater by means of coregionalization. Environmental Geology 36 (3–4), 285–295 (1998).
  • 8. Grzebisz W., Cieśla L., Komisarek J., Potarzycki J.: Geochemical assessment of heavy metals pollution of urban soils. Polish Journal of Environmental Studies 11 (5), 493–499 (2002).
  • 9. Hermanowicz W., Dojlido J., Dożańska W., Koziorowski B., Zerbe J.: Fizyczno-chemiczne badanie wody i ścieków. Wyd. Arkady. Warszawa, 1999.
  • 10. Jakubus M., Komisarek J., Walkowiak R., Mocek A., Czekała J., Moliński K.: Spatial distribution of cadmium, nickel and lead in soil humus horizon in the middle part of Wielkopolska region. Fresenius Environmental Bulletin Volume 19 (4), 569–575 (2010).
  • 11. Komisarek J., Kozłowski M.: Czasowa zmienność zawartości kationów w wodach gruntowych gleb kateny falistej moreny dennej Pojezierza Poznańskiego. Rocz. AR Pozn. 357, Melior. Inż. Środ. 25, 257–266 (2004).
  • 12. Komisarek J.: Kształtowanie się właściwości gleb płowych i czarnych ziem oraz chemizmu wód gruntowych w katenie falistej Pojezierza Poznańskiego. Rocz. AR Pozn. Rozp. Nauk. 307, 2000
  • 13. Kozłowski M., Komisarek J.: Specjacja wybranych składników rozpuszczonych w wodach gruntowych układu katenalnego na Pojezierzu Poznańskim. Rocznik Ochrona Środowiska (Annual Set the Environment Protection), 14, 607–622 (2012).
  • 14. Liu CW., Lin KH., Kuo YM.: Application of factor analysis in the assessment of groundwater quality in a blackfoot disease in Taiwan. The Science of the Total Environmental. 313, 77–89 (2003).
  • 15. Marcinek J. Kaźmierowski C. Komisarek J.: Rozmieszczenie gleb i zróżnicowanie ich właściwości w katenie falistej moreny dennej Pojezierza Poznańskiego. Zesz. Prob. Post. Nauk Roln. 460, 53–73 (1998).
  • 16. Marcinek J., Komisarek J., Kaźmierowski C.: Czasowa i przestrzenna zmienność chemizmu wód gruntowych w układzie katenalnym gleb Wielkopolski. Zesz. Probl. Post. Nauk Roln. 418, 149–156 (1995).
  • 17. Marcinek J., Komisarek J., Kaźmierowski C.: Dynamika składników rozpuszczonych w wodach gruntowych uprawnych gleb płowych i czarnych ziem. Rocz. AR Pozn. 268, Melior. Inż. Środ. 15, cz. 1, 69–82 (1994).
  • 18. Marcinek J., Komisarek J.: Pojemność wymienna kationów i czas migracji składników rozpuszczonych w wodzie od powierzchni gleby do zwierciadła wód gruntowych. Pr. Kom. Nauk Roln. Kom. Nauk Leśn. PTPN 69, 1990.
  • 19. Mitra B.K., Sasaki C., Enari K., Matsuyama N., Pongpattanasiri S.: Groundwater quality in sand dune area of northwest Honshu island in Japan. Journal of Agronomy 6(1), 81–87 (2007).
  • 20. Pannatier Y.: VARIOWIN: Software for Spatial Data Analysis in 2D. Springer Verlag, 91p, 1996.
  • 21. PN-88-C04537/04. Woda i ścieki. Badania zawartości związków fosforu. Oznaczanie rozpuszczonych ortofosforanów kolorymetryczną metodą molibdenianową z kwasem askorbinowym jako reduktorem. Polski Komitet Normalizacyjny. Warszawa.
  • 22. PN-EN 25667-1. Jakość wody. Pobieranie próbek.. Wytyczne dotyczące opracowania programów pobierania próbek. Polski Komitet Normalizacyjny. Warszawa, 2003.
  • 23. Shahbazi A., Esmaeili-Sari A.: Groundwater quality assessment in north of Iran:A case study of the Mazandaran Province. World Applied Sciences Journal 5 (Special Issue for Environment), 92–97 (2009).
  • 24. Varsanyi I.: Temporal variability in groundwater chemistry in the Great Hungarian Plain during the period 1975–1989. Hydrological Sciences Journal des Sciences Hydrologiques 37 (2), 119–128 (1992).
  • 25. Warrick A.W., Myers D.E., Nielsen D.R.: Geostatistical methods applied to soil science. W: Method of soil analysis. P. 1. Physical and mineralogical methods. R. A. Klute, Agronomy Monograph 9. ASA-SSSA, Madison: 53–82 (1986).
  • 26. Yeh MS., Lin YP, Chang TK.: Designing an optimal multivariate geostatistical groundwater quality monitoring network using factorial kriging and genetic algorithms. Environmental Geology 50, 101–121 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c438024-e695-4c02-b79a-18e8cb3ba803
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.