PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Value addition in coupled model intercomparison project phase 6 over phase 5: global perspectives of precipitation, temperature and soil moisture fields

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study establishes the improvements in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) simulations as compared to its previous version, CMIP5. First, the historical simulations are compared with the reanalysis products from the 5th generation European Centre for Medium-Range Weather Forecasts (ERA5). Quality improvement in CMIP6 is assured through its correspondence with ERA5 in terms of mean, standard deviation and mean bias. Global fields of three hydrometeorological variables, i.e. temperature, precipitation and soil moisture, are considered from multiple General Circulation Models. Among the three variables, maximum improvement is noticed in case of soil moisture followed by precipitation, especially in the tropical belt. In case of temperature, the mean bias has reduced by±3 °C across the parts of North America, Africa, and South Asia. Better reliance on the CMIP6 motivates for a trend analysis to peek into the future. The results indicate a significant increasing trend for precipitation in the temperate, polar and sub-polar regions, whereas a significant increase in temperature is noticed almost all across the world with highest slope in the polar and sub-polar regions. Furthermore, soil moisture shows a significant trend that can be grouped continent-wise, e.g. Africa, Central and South Asia exhibit an increasing trend, whereas North and Central America and Northern parts of South America exhibit an overall decreasing trend. Apart from underlining the better reliance on CMIP6, the findings of this study will also be useful across different parts of the world for many climate related studies using CMIP6.
Czasopismo
Rocznik
Strony
1401--1415
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
autor
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
Bibliografia
  • 1. Almazroui M, Saeed F, Saeed S et al (2020a) Projected change in temperature and precipitation over Africa from CMIP6. Earth Syst Environ 4:455–475. https://doi.org/10.1007/s41748-020-00161-x
  • 2. Almazroui M, Saeed S, Saeed F et al (2020b) Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Syst Environ 4:297–320. https://doi.org/10.1007/s41748-020-00157-7
  • 3. Chen S, Yuan X (2021) CMIP6 projects less frequent seasonal soil moisture droughts over China in response to different warming levels. Environ Res Lett. https://doi.org/10.1088/1748-9326/abe782
  • 4. Cook BI, Mankin JS, Marvel K et al (2020) Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Futur 8:1–20. https://doi.org/10.1029/2019EF001461
  • 5. Deng K, Azorin-Molina C, Minola L et al (2020) Global near-surface wind speed changes over the last decades revealed by reanalyses and CMIP6 model simulations. J Clim 34:2219–2234. https://doi.org/10.1175/jcli-d-20-0310.1
  • 6. Dosio A, Panitz HJ, Schubert-Frisius M, Lüthi D (2015) Dynamical downscaling of CMIP5 global circulation models over CORDEX-Africa with COSMO-CLM: evaluation over the present climate and analysis of the added value. Clim Dyn 44:2637–2661. https://doi.org/10.1007/s00382-014-2262-x
  • 7. Eyring V, Bony S, Meehl GA et al (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organisation. Geosci Model Dev Discuss 8:10539–10583. https://doi.org/10.5194/gmdd-8-10539-2015
  • 8. Eyring V, Cox PM, Flato GM et al (2019) Taking climate model evaluation to the next level. Nat Clim Chang 9:102–110. https://doi.org/10.1038/s41558-018-0355-y
  • 9. Fan X, Duan Q, Shen C et al (2020a) Global surface air temperatures in CMIP6: historical performance and future changes. Environ Res Lett. https://doi.org/10.1088/1748-9326/abb051
  • 10. Fan X, Miao C, Duan Q et al (2020b) The performance of CMIP6 versus CMIP5 in simulating temperature extremes over the global land surface. J Geophys Res Atmos 125:1–16. https://doi.org/10.1029/2020JD033031
  • 11. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183
  • 12. Gusain A, Ghosh S, Karmakar S (2020) Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos Res 232:104680. https://doi.org/10.1016/j.atmosres.2019.104680
  • 13. Hermans THJ, Gregory JM, Palmer MD et al (2021) Projecting global mean sea-level change using CMIP6 models. Geophys Res Lett 48:1–11. https://doi.org/10.1029/2020GL092064
  • 14. Hirabayashi Y, Tanoue M, Sasaki O et al (2021) Global exposure to flooding from the new CMIP6 climate model projections. Sci Rep 11:1–7. https://doi.org/10.1038/s41598-021-83279-w
  • 15. Huntington TG (2010) Chapter one-climate warming-induced intensification of the hydrologic cycle: an assessment of the published record and potential impacts on agriculture. In: Donald L (ed) Advances in agronomy, vol 09. Academic Press, Sparks, pp 1–53. https://doi.org/10.1016/B978-0-12-385040-9.00001-3
  • 16. IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, p 582
  • 17. Jiang D, Hu D, Tian Z, Lang X (2020) Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon. Adv Atmos Sci 37:1102–1118. https://doi.org/10.1007/s00376-020-2034-y
  • 18. Kendall MG (1975) Rank Correlation Methods, 4th edn. Charles Griffin, London
  • 19. Kim YH, Min SK, Zhang X et al (2020) Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim Extrem 29:100269. https://doi.org/10.1016/j.wace.2020.100269
  • 20. Liu X, Li C, Zhao T, Han L (2020a) Future changes of global potential evapotranspiration simulated from CMIP5 to CMIP6 models. Atmos Ocean Sci Lett 13:568–575. https://doi.org/10.1080/16742834.2020.1824983
  • 21. Liu Y, Zhu Y, Zhang L et al (2020b) Flash droughts characterization over China: from a perspective of the rapid intensification rate. Sci Total Environ 704:135373. https://doi.org/10.1016/j.scitotenv.2019.135373
  • 22. Liu X, Yuan X, Zhu E (2021) Global warming induces significant changes in the fraction of stored precipitation in the surface soil. Glob Planet Change 205:103616. https://doi.org/10.1016/j.gloplacha.2021.103616
  • 23. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259
  • 24. Narsey SY, Brown JR, Colman RA et al (2020) Climate change projections for the Australian monsoon from CMIP6 models. Geophys Res Lett 47:1–9. https://doi.org/10.1029/2019GL086816
  • 25. Nikiema PM, Sylla MB, Ogunjobi K et al (2017) Multi-model CMIP5 and CORDEX simulations of historical summer temperature and precipitation variabilities over West Africa. Int J Climatol 37:2438–2450. https://doi.org/10.1002/joc.4856
  • 26. O’Neill BC, Tebaldi C, Van Vuuren DP et al (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9:3461–3482. https://doi.org/10.5194/gmd-9-3461-2016
  • 27. Pendergrass AG (2020) The global-mean precipitation response to CO2-induced warming in CMIP6 models. Geophys Res Lett 47:1–10. https://doi.org/10.1029/2020GL089964
  • 28. Qiao L, Zuo Z, Xiao D (2022) Evaluation of soil moisture in CMIP6 simulations. J Clim 35:779–800. https://doi.org/10.1175/JCLI-D-20-0827.1
  • 29. Sante DF, Coppola E, Giorgi F (2021) Projections of river floods in Europe using EURO-CORDEX, CMIP5 and CMIP6 simulations. Int J Climatol. https://doi.org/10.1002/joc.7014
  • 30. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s Tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934
  • 31. Stouffer RJ, Eyring V, Meehl GA et al (2017) CMIP5 scientific gaps and recommendations for CMIP6. Bull Am Meteorol Soc 98:95–105. https://doi.org/10.1175/BAMS-D-15-00013.1
  • 32. Sung HM, Kim J, Lee J-H et al (2021) Future changes in the global and regional sea level rise and sea surface temperature based on CMIP6 models. Atmosphere (basel) 12:90. https://doi.org/10.3390/atmos12010090
  • 33. Sylla MB, Gaye AT, Jenkins GS (2012) On the fine-scale topography regulating changes in atmospheric hydrological cycle and extreme rainfall over West Africa in a regional climate model projections. Int J Geophys. https://doi.org/10.1155/2012/981649
  • 34. Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. Indag Math 12:173
  • 35. Ukkola AM, De Kauwe MG, Roderick ML et al (2020) Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys Res Lett 47:1–9. https://doi.org/10.1029/2020GL087820
  • 36. Wang B, Jin C, Liu J (2020) Understanding future change of global monsoons projected by CMIP6 models. J Clim 33:6471–6489. https://doi.org/10.1175/JCLI-D-19-0993.1
  • 37. Wang X, Li Y, Wang M et al (2021) Changes in daily extreme temperature and precipitation events in mainland China from 1960 to 2016 under global warming. Int J Climatol 41:1465–1483. https://doi.org/10.1002/joc.6865
  • 38. Zhu Y, Yang S (2021) Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int J Climatol 41:E1100–E1118. https://doi.org/10.1002/joc.6756
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c3cbc2a-8e01-4dd0-944b-7bf82dcf6c1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.