Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigates Thomas’ cyclically symmetric attractor dynamics with mathematical and electronic simulations using a proportional fractional derivative to comprehend the dynamics of a given chaotic system. The three-dimensional chaotic flow was examined in detail with Riemann-Liouville derivative for different values of the fractional index to highlight the sensitivity of chaotic systems with initial conditions. Thus, the dynamics of the fractional index system were investigated with Eigenvalues, Kaplan-Yorke dimension, Lyapunov exponent, and NIST testing, and their corresponding trajectories were visualized with phase portraits, 2D density plot, and Poincaré maps. After obtaining the results, we found that the integer index dynamics are more complex than the fractional index dynamics. Furthermore, the chaotic system circuit is simulated with operational amplifiers for different fractional indices to generate analog signals of the symmetric attractor, making it an important aspect of engineering. The qualitative application of our nonlinear chaotic system is then applied to encrypt different data types such as voice, image, and video, to ensure that the developed nonlinear chaotic system can widely applied in the field of cyber security.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
239--271
Opis fizyczny
Bibliogr. 39 poz., fot., rys., tab., wzory
Twórcy
autor
- Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
autor
- Department of Physics, University of Karachi, Karachi 75270, Pakistan
autor
- Department of Mathematics, University of Karachi, Karachi 75270, Pakistan
autor
- College of Humanities and Sciences, PAF-KIET, Karachi 75190, Pakistan
Bibliografia
- [1] H. Weidenmüller and G.E. Mitchell: Random matrices and chaos in nuclear physics: Nuclear structure. Reviews of Modern Physics, 81(2), (2009), 539. DOI: 10.1103/RevModPhys.81.539.
- [2] C.W. Horton and L.E. Reichl: Statistical physics and chaos in fusion plasmas. Wiley-Interscience, New York, 1984.
- [3] M. Kyriazis: Applications of chaos theory to the molecular biology of aging. Experimental Gerontology, 26(6), (1991), 569-572. DOI: 10.1016/0531-5565(91)90074-v.
- [4] D. Guegan: Chaos in economics and finance. Annual Reviews in Control, 33(1), (2009), 89-93. DOI: 10.1016/j.arcontrol.2009.01.002.
- [5] D.S. Coffey: Self-organization, complexity and chaos: the new biology for medicine. Nature Medicine, 4(8), (1998), 882-885. DOI: 10.1038/nm0898-882.
- [6] J. Lee, C. Lee, and D.B. Williams: Secure communication using chaos. In Proceedings of the 1995 IEEE Global Telecommunications Conference, Singapore, (1995), Part 2, 1183-1187.
- [7] N.A. Khan, T. Hameed, and M.A. Qureshi: Emulate the chaotic flows of fractional jerk system to scramble the sound and image memo with circuit execution. Physica Scripta, 95(6), (2020), 065217. DOI: 10.1088/1402-4896/ab8581.
- [8] S. Vaidyanathan, A. Sambas, M. Mamat, and M. Sanjaya: A new three-dimensional chaotic system with a hidden attractor, circuit design and application in wireless mobile robot. Archives of Control Sciences, 27(4), (2017), 541-554. DOI: 10.1515/acsc-2017-0032.
- [9] S. Vaidyanathan, S. He, and A. Sambas: A new multistable double-scroll 4-D hyperchaotic system with no equilibrium point, its bifurcation analysis, synchronization and circuit design. Archives of Control Sciences, 31(1), (2021), 99-128. DOI: 10.24425/acs.2021.136882.
- [10] E.N. Lorenz: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2) (1963), 130-141. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
- [11] T. Wang and X. Wang: A type of single scroll attractor chaos synchronization. International Journal of Modern Physics B, 24(27), (2010), 5269-5283. DOI: 10.1142/S0217979210055500.
- [12] K. Chu, Z. Zhu, H. Qian, and W. Huagan: Novel 3-scroll Chua’s attractor with one saddle-focus and two stable node-foci. Mathematical Problems in Engineering, 2018 917313. DOI: 10.1155/2018/8917313.
- [13] Y. Li, X. Xia, Y. Zheng, and Q. Hong: Composite one-to six-scroll hidden attractors in a memristor-based chaotic system and their circuit implementation. Complexity, 2020 2020. DOI: 10.1155/2020/3259468.
- [14] X. Hu, C. Liu, L. Liu, J. Ni, and S. Li: Multi-scroll hidden attractors in improved Sprott A system. Nonlinear Dynamics, 86(3), (2016), 1725-1734. DOI: 10.1007/s11071-016-2989-5.
- [15] B. van der Pol: A theory of the amplitude of free and forced triode vibrations. Radio review, 1 (1920), 701-710.
- [16] D.T. Maris and D.A. Goussis: The “hidden” dynamics of the Rössler attractor. Physica D: Nonlinear Phenomena, 1 (2015), 66-90. DOI: 10.1016/j.physd.2014.12.010.
- [17] T. Menacer, R. Lozi, and L.O. Chua: Hidden bifurcations in the multispiral Chua attractor. International Journal of Bifurcation and Chaos, 26(14), (2016), 1630039. DOI: 10.1142/S0218127416300391.
- [18] T. Zhou, Y. Tang, and G. Chen: Chen’s attractor exists. International Journal of Bifurcation and Chaos, 14(9), (2004), 3167-3177. DOI: 10.1142/S0218127404011296.
- [19] I. Pehlivan, E. Kurt, Q. Lai, A. Basaran, and M. Kutlu: A multiscroll chaotic attractor and its electronic circuit implementation. Chaos. Theory and Applications, 1(1), (2019), 29-37.
- [20] E. Tlelo-Cuautle, A. de Jesus Quintas-Valles, L.G. de la Fraga, and J. de Jesus Rangel-Magdaleno: VHDL descriptions for the FPGA implementation of PWL-function-based multi-scroll chaotic oscillators. PLos One, 11(12), (2016), e0168300. DOI: 10.1371/journal.pone.0168300.
- [21] M.I. Rabinovich and A.L. Fabrikant: Stochastic self-modulation of waves in nonequilibrium media. Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 77 (1979), 617-629, (In Russian).
- [22] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo: Theory and applications of fractional differential equations. Elsevier, 2006.
- [23] N.A. Khan, M.A. Qureshi, S. Akbar, and A. Ara: From chaos to encryption using fractional order Lorenz-Stenflo model with flux-controlled feedback memristor. Physica Scripta, 98(1), (2022), 014002. DOI: 10.1088/1402-4896/aca1e8.
- [24] T.T. Hartley, C.F. Lorenzo, and H. Killory Qammer: Chaos in a fractional order Chua’s system. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 42(8), (1995), 485-490. DOI: 10.1109/81.404062.
- [25] C. Li and G. Chen: Chaos in the fractional order Chen system and its control. Chaos, Solitons, and Fractals, 22(3), (2004), 549-554. DOI: 10.1016/j.chaos.2004.02.035.
- [26] K. Rajagopal, A. Karthikeyan, and A.K. Srinivasan: FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization. Nonlinear Dynamics, 87(4), (2017), 2281-2304. DOI: 10.1007/s11071-016-3189-z.
- [27] K. Moaddy, A. Freihat, M. Al-Smadi, E. Abuteen, and I. Hashim: Numerical investigation for handling fractional-order Rabinovich–Fabrikant model using the multistep approach. Soft Computing, 22(3), (2018), 773-782. DOI: 10.1007/s00500-016-2378-5.
- [28] E. Kaslik and S. Sivasundaram: Nonlinear dynamics and chaos in fractional-order neural networks. Neural Networks, 32 (2012), 245-256. DOI: 10.1016/j.neunet.2012.02.030.
- [29] N.A. Khan, M.A. Qureshi, T. Hameed, S. Akbar, and S. Ullah: Behavioral effects of a four-wing attractor with circuit realization: a cryptographic perspective on immersion. Communications in Theoretical Physics, 72(12), (2020), 125004. DOI: 10.1088/1572-9494/abb7d1.
- [30] N.A. Khan, S. Akbar, M.A. Qureshi, T. Hameed, and N.A. Khan: Qualitative study of the fractional order nonlinear chaotic model: electronic realization and secure data enhancement. Journal of the Korean Physical Society, 78(2), (2021), 93-108. DOI: 10.1007/s40042-020-00017-7.
- [31] H. Antonio, P.W.C Prasad and A. Alsadoon: Implementation of cryptography in steganography for enhanced security. Multimedia Tools and Applications, 78(23), (2019), 32721-32734. DOI: 10.1007/s11042-019-7559-7.
- [32] R. Thomas: Deterministic chaos seen in terms of feedback circuits: Analysis, synthesis, “labyrinth chaos”. International Journal of Bifurcation and Chaos, 9(10), (1999), 1889-1905. DOI: 10.1142/S0218127499001383.
- [33] S. Ellner, A.R. Gallant, D. McCaffrey and D. Nychka: Convergence rates and data requirements for Jacobian-based estimates of Lyapunov exponents from data. Physics Letters A, 153(6-7), (1991), 357-363. DOI: 10.1016/0375-9601(91)90958-B.
- [34] A. Wolf, J.B. Swift, H.L. Swinney, and J.A. Vastano: Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3), (1985), 285-317. DOI: 10.1016/0167-2789(85)90011-9.
- [35] A. Maus and J. Sprott: Evaluating Lyapunov exponent spectra with neural networks. Chaos, Solitons & Fractals, 51 (2013), 13-21. DOI: 10.1016/j.chaos.2013.03.001.
- [36] B. Aricioglu: RNG and circuit implementation of a fractional order chaotic attractor based on two degrees of freedom nonlinear system. Analog Integrated Circuits and Signal Processing, 112(1), (2022), 49-63. DOI: 10.1007/s10470-022-02040-z.
- [37] M.A. Qureshi: Encryption-python-codes: release of voice and image encryption in Python. Zenodo, (2020). DOI: 10.5281/zenodo.3693098.
- [38] M.A. Qureshi: Amalgamated image encryption. Circuit realization for Lorenz-Stenflo chaotic system. Zenodo, (2022). DOI: 10.5281/zenodo.7046557.
- [39] M.A. Qureshi: Release of video encryption in Python. Zenodo, DOI: 10.5281/zenodo.5499881.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c3afd07-c290-4c3d-9d5c-d96f8719d980
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.