PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of Used Graphite Electrodes as Metal Matrix Composites Reinforcement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work presents the effect of the addition of graphite from recycled graphite electrodes on the mechanical properties of metal matrix composites (MMC) based on the AlMg10 alloy. A composite based on the AlMg10 alloy reinforced with natural graphite particles was also tested. Further, tests of the mechanical properties of the AlMg10 alloy were performed for comparative purposes. Composites with a particle content of 5, 10 and 15 percent by volume were produced by adding introduction of particles into the liquid matrix while mechanically mixing molten alloy. The composite suspensions were gravitationally cast into metal molds. Samples for the Rm , R 0.2, A and E tests were made from the prepared castings. Photos of the microstructures of the materials were also taken. The research shows that the addition of graphite to the matrix alloy causes minor changes in tensile strength (Rm) and yield strength (R 02), regardless of the type of graphite used. The results of the relative elongation tests showed that the introduction of graphite particles into the matrix alloy had an adverse effect on the elongation values in the case of each of the tested composites. The introduction of graphite particles into the AlMg10 alloy significantly increased the Young’s modulus value, both in the case of composites with flake graphite (natural) and graphite from ground graphite electrodes.
Rocznik
Strony
21--25
Opis fizyczny
Bibliogr. 20 poz., il., wykr.
Twórcy
Bibliografia
  • [1] Journal of Laws (2023). item 1587, as amended.
  • [2] Świądkowska, W. (2017). Jagiellonian University Repository Recycling. Cracow: Jagiellonian University Publishers.
  • [3] Fleszar, J. (2014). Legal, economic and organisational aspects of vehicle recycling. Buses: technology, operation, transportation systems. 15(6), 113-117.
  • [4] Carbograf. Graphite electrodes for furnaces arched. Retrieved June 28, 2023 from https://www.carbograf.pl/graf-elektrody-do-piecow-lukowych
  • [5] Łędzki, A., Michaliszyn, A., Klimczyk A. (2012). Steel melting in electric arc furnaces. Extraction metallurgy of iron, Cracow, AGH.
  • [6] Custom Market Insight. Global Graphite Electrode Market 2023-2032. Retrieved June 28, 2023 from https://www.custommarketinsights.com/report/graphite/electrode-market/.
  • [7] Industry Arc. (2023) Graphite Electrodes Market Overview. Retrieved June 28, 2023 from https://www.industryarc.com/Research/Graphite-Electrodes-Market-Research-503019.
  • [8] Festinger, N., Morawska, K., Ciesielski, W. (2019). Electrochemical properties of electrodes made of highly oriented pyrolytic graphite. In Quadrant for chemistry: a monograph: Spring Convention of the Student Section of the Polish Chemical Society, 10-14.04.2019 (pp. 45-52). Ustron.
  • [9] Janicka, E. (2014). Comprehensive impedance characterization of fuel cell performance. Doctoral dissertation. Gdansk University of Technology.
  • [10] Kuśmierek, K., Świątkowski, A., Skrzypczyńska, K. (2015). The role of the specific surface area of carbon materials used in modified graphite paste electrodes. Applied electrochemistry. Cracow: Scientific Publishing House AKAPIT.
  • [11] Chemistry and Business. (2023). Synthetic graphite is becoming more and more popular. Retrieved June 27, 2023 from https://www.chemiaibiznes.com.pl/artykuly/grafit-syntetyczny-coraz-chetniej-stosowany.
  • [12] Green Energy. Refractories and Isolation. (2020). Overview of Metallurgical Graphite Electrodes and Analysis of Carbon Products Industry. Retrieved June 28, 2023 from http://pl.greenergyrefrataatarios.com/info/overview-of-metallurgical-graphite-electrodes-49845995.html.
  • [13] BAT Reference Document for Best Available Techniques in the Production of Non-Ferrous Metals (2001). Lukasiewicz Research Network - Institute of Non-Ferrous Metals Legnica Branch, interpreter: Płonka A., Bzowski W., Przebindowski Z.
  • [14] Myalski, J. & Sleziona, J. (2005). Metal composites reinforced with glassy carbon particles. Foundry Review. 1(55), 24-27.
  • [15] Naplocha, K., Samsonowicz Z. & Janus, A. (2005). Aluminum alloy matrix composites reinforced with Al2O3 fibers and graphite. Composites. 5(2), 95-98.
  • [16] Łągiewka, M. & Komlasiak, C. (2021). Solidification of the Al alloy composite reinforced with graphite. Metalurgija. 60(3-4), 399-402.
  • [17] Tjong, S.C., Wang, H.Z. & Wu, S.Q. (1996). Wear behavior of aluminum-based matrix composites reinforced with a preform of aluminosilicate. Metallurgical and Materials Transactions. 27(8), 2385-2389. https://doi.org/10.1007/BF02651894.
  • [18] Łągiewka, M. & Konopka, Z. (2014). Effect of graphite addition on abrasive wear of AlMg10 alloy matrix composites reinforced with SiC particles. Archives of Foundry Engineering. 14(3), 51- 54. ISSN (1897-3310).
  • [19] Naplocha, K. & Janus, A. (2006). Abrasion resistance of aluminum alloy matrix composites reinforced with Al2O3 fibers and graphite. Composites. 6(1), 3-8.
  • [20] Komlasiak, C. & Łągiewka, M. (2023). Foundry properties of composites on AlMg10 alloy matrix with SiC and Cgr particles. Metalurgija. 62(1), 149-151.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c39fc84-a69b-4b1b-b355-4bcd1cd67c27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.