PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A study of control scheme of debris flows and geological disasters in the Shiwei river basin

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic characteristics of debris flows in the Shiwei river basin are summarized through the field investigation on debris flows in the Shiwei river basin and analysis on formation conditions of debris flows from three aspects, i.e. geological environment, geological structure and neotectonic movement, as well as seismic action. Based on this, the stability of landslide in the Shiwei river basin is analyzed and calculated, and the stability coefficient of landslide is obtained. The debris flows in the Shiwei river basin will directly damage and threaten the county town, while other geological disasters such as landslide, collapse, slope sliding & collapse and potentially unstable slopes will indirectly damage and threaten the county town. The landslide form is clear, and the landslide stability calculation shows that the landslide body is generally stable – basically stable, but partially unstable – less stable. The “blocking + discharging” comprehensive control scheme is proposed according to the formation conditions and development characteristics of debris flows in the Shiwei river basin, and the study findings can be used as a reference for similar projects.
Rocznik
Strony
509--526
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Civil Engineering, School of Civil Engineering, Chongqing Chemical Industry Vocational College, 400020 Chongqing, China
Bibliografia
  • [1] W. Shen, M. Berti, T.L. Li, A. Benini, and Z.T. Qiao, “The influence of slope gradient and gully channel on the run-out behavior of rockslide-debris flow: an analysis on the Verghereto landslide in Italy”, Landslides, vol. 19, no. 4, pp. 885–900, 2022, doi: 10.1007/s10346-022-01848-0.
  • [2] S. Ueta, N. Hosono, R. Kuroki, and Y. Yamashiki, “Numerical simulation study of debris particles movement characteristics by smoothed particle hydrodynamics”, Journal of Disaster Research, vol. 17, no. 2, pp. 237–245, 2022, doi: 10.20965/jdr.2022.p0237.
  • [3] J.E. Romero, F. Vergara-Pinto, G. Aguilar, A. Garces, and S. Montserrat, “Triggering factors, behavior, and social impact of the January 2021 hail-debris flows at the Central Valley of Chile”, Landslides, vol. 19, no. 4, pp. 865–883, 2022, doi: 10.1007/s10346-021-01830-2.
  • [4] R.K. Dash, P.O. Falae, and D.P. Kanungo, “Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas-implementation, validation, and comparative evaluation”, Natural Hazards, vol. 111, no. 2, pp. 2011–2058, 2022, doi: 10.1007/s11069-021-05128-3.
  • [5] S. D. Andrade, S. Almeida, E. Saltos, D. Pacheco, S. Hernandez, and W.Acero, “Asimple and general methodology to calibrate seismic instruments for debris flow quantification: application to Cotopaxi and Tungurahua volcanoes (Ecuador)”, Landslides, vol. 19, no. 3, pp. 747–759, 2022, doi: 10.1007/s10346-021-01784-5.
  • [6] S.Y. Yao, N.A. Bazai, J.B. Tang, H. Jiang, S.J. Yi, Q. Zou, T. Ahmed, and J. Guo, “Dynamic process of a typical slope debris flow: a case study of the wujia gully, Zengda, Sichuan Province, China”, Natural Hazards, vol. 112, no. 1, pp. 565–586, 2022, doi: 10.1007/s11069-021-05194-7.
  • [7] S.C. Pal, R. Chakrabortty, A. Saha, S.K. Bozchaloei, Q.B. Pham, N.T.T. Linh, D.T. Anh, S. Janizadeh, and K. Ahmadi, “Evaluation of debris flow and landslide hazards using ensemble framework of Bayesian- and tree-based models”, Bulletin of Engineering Geology and The Environment, vol. 81, no. 1, art. no. 55, 2022, doi: 10.1007/s10064-021-02546-2.
  • [8] V.C. Dias, S. McDougall, and B.C. Vieira, “Geomorphic analyses of two recent debris flows in Brazil”, Journal of South American Earth Sciences, vol. 113, art. no. 103675, 2022, doi: 10.1016/j.jsames.2021.103675.
  • [9] I. Baselt, G.Q. de Oliveira, J.T. Fischer, and S.P. Pudasaini, “Deposition morphology in large-scale laboratory stony debris flows”, Geomorphology, vol. 396, art. no. 107992, 2022, doi: 10.1016/j.geomorph.2021.107992.
  • [10] H. Kokuryo, T. Horiguchi, and N. Ishikawa, “Safety assessment method of steel protective structure against large-scale debris flow”, International Journal of Protective Structures, vol. 13, no. 3, pp. 509–538, 2021, doi: 10.1177/20414196211059552.
  • [11] Z. Bestynski, E. Sieinski, and P. Sliwinski, “Geophysical investigation and the use of their results in the evaluation of the stability of slopes of artificial water reservoirs in the flysch Carpathians”, Archives of Civil Engineering, vol. 68, no. 3, pp. 71–85, 2022, doi: 10.24425/ace.2022.141874.
  • [12] H.H. Wu, “A study of landslide body control of black bovine cave copper ore mining and beneficiation project”, Archives of Civil Engineering, vol. 69, no. 2, pp. 291–309, 2023, doi: 10.24425/ace.2023.145268.
  • [13] DZ/T0219-2006 Technical code for design and construction of landslide prevention and control engineering. Standards Press of China, 2006 (in Chinese).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c343914-8be7-47cc-90ba-066adfe566de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.