PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D-Mueller-matrix tomography of optically anisotropic polycrystalline networks of biological tissues histological sections

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new technique of Mueller-matrix mapping of the birefringent structure of biological preparations of human organs tissues is suggested. The algorithms of reconstruction of average values and magnitude of fluctuations of the phase (birefringence) and amplitude (dichroism) of optically anisotropic structure of myocardium and connective tissue component of the vaginal wall histological section are proposed.The magnitudes and ranges of changes in the statistical moments of the 1st-4th order that characterize the distribution of average values and magnitude of fluctuations of birefringence and dichroism of the myocardium and connective tissue of the vaginal tissues histological sections were determined. Joint studies of distributions of the characteristics of phase and amplitude of the anisotropy of myocardium and connective tissue component of the vaginal wall tissues of different states were performed. The cases of various necrotic changes in the myocardium and pathological conditions of the vagina wall (prolapse of the genitals) are examined. Balanced accuracy of the method of Mueller-matrix polarization-phase and diffuse tomography of optically anisotropic polycrystalline networks in the differentiation of necrotic and pathological changes in human organs is determined.
Twórcy
autor
  • Rivne State Medical Center, 78 Kyivska Str., Rivne, 33007, Ukraine
  • Warsaw Military Institute of Medicine, ul. Szaserów 128, Warsaw, 04141, Poland
autor
  • Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58012, Ukraine
autor
  • Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58012, Ukraine
autor
  • Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58012, Ukraine
autor
  • Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58012, Ukraine
autor
  • Bukovinian State Medical University, 3 Theatral Sq., Chernivtsi, 58000, Ukraine
  • Bukovinian State Medical University, 3 Theatral Sq., Chernivtsi, 58000, Ukraine
autor
  • Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58012, Ukraine
  • Chernivtsi National University, 2 Kotsiubynskyi Str., Chernivtsi, 58012, Ukraine
Bibliografia
  • [1] V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, vol. 166, second edition, SPIE Press, Bellingham, WA, PM,2007.
  • [2] S. Bickel, W.M. Bailey, Stokes vectors, Mueller matrices, and polarization of scattered light, Am. J. Phys. 53 (1985) 468–478.
  • [3] X. Wang, G. Yao, L.H. Wang, Monte Carlo model and single-scattering approximation of polarized light propagation in turbid media containing glucose, Appl. Opt. 41 (2002) 792–801.
  • [4] X. Wang, L.-H. Wang, Propagation of polarized light in birefringent turbidmedia: a Monte Carlo study, J. Biomed. Opt. 7 (2002) 279–290.
  • [5] O.V. Angelsky, A.Ya Bekshaev, P.P. Maksimyak, A.P. Maksimyak, S.G. Hanson, Measurement of small light absorption in microparticles by means of optically induced rotation, Opt. Express 23 (6) (2015) 7152–7163.
  • [6] O.V. Angelsky, R.N. Besaha, A.I. Mokhun, I.I. Mokhun, M.O. Sopin, M.S. Soskin, Singularities in vectoral fields, Proc. SPIE. Int. Soc. Opt. Eng. 3904 (1999)40–54.
  • [7] V.K. Polyanskii, O.V. Angelsky, P.V. Polyanskii, Scattering-induced spectra changes as a singular optical effect, Opt. Appl. 32 (4) (2002) 843–848.
  • [8] O.V. Angelsky, M.P. Gorsky, S.G. Hanson, V.P. Lukin, I.I. Mokhun, P.V.Polyanskii, P.A. Ryabiy, Optical correlation algorithm for reconstructing phaseskeleton of complex optical fields for solving the phase problem, Opt. Exp. 22(5) (2014) 6186–6193.
  • [9] V.V. Tuchin, L. Wang, D.A. Zimnyakov, Optical Polarization in Biomedical Applications, New York, USA, 2006.
  • [10] R.A. Chipman, in: M. Bass (Ed.), Polarimetry in Handbook of Optics: Vol. I - Geometrical and Physical Optics, Polarized Light, Components and Instruments, McGraw-Hill Professional, New York, 2010, pp. 22.1–22.37.
  • [11] N. Ghosh, M.F.G. Wood, I.A. Vitkin, in: V.V. Tuchin (Ed.), Polarized Light Assessment of Complex Turbid media Such as Biological Tissues via Mueller Matrix Decomposition in Handbook of Photonics for Biomedical Science, CRCPress, Taylor & Francis Group, London, 2010, pp. 253–282.
  • [12] S.L. Jacques, in: D. Boas, C. Pitris, N. Ramanujam (Eds.), Polarized Light Imaging of Biological Tissues in Handbook of Biomedical Optics, CRC Press,Boca Raton, London, New York, 2011, pp. 649–669.
  • [13] A.G. Ushenko, V.P. Pishak, Laser polarimetry of biological tissue: principles and applications, handbook of coherent-domain optical methods, Biomed.Diagn. Environ. Mater. Sci. (2004) 239–321.
  • [14] O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, V.P. Pishak, A.P. Peresunko, Statistical, correlation and topological approaches in diagnostics of the structure and physiological state of birefringent biological tissues, Handb.Photon. Biomed. Sci. (2010) 283–322.
  • [15] Yu.A. Ushenko, T.M. Boychuk, V.T. Bachynsky, O.P. Mincer, Diagnostics of Structure and Physiological State of Birefringent Biological Tissues: Statistical, Correlation and Topological Approaches, Handbook of Coherent-Domain Optical Methods, Springer Science+Business Media, 2013, 107.
  • [16] O.V. Angelsky, Y.Y. Tomka, A.G. Ushenko, Y.G. Ushenko, S.B. Yermolenko, 2-Dtomography of biotissue images in pre-clinic diagnostics of their pre-cancer states, Proc. SPIE. Int. Soc. Opt. Eng. 5972 (2005) 158–162.
  • [17] Yu.A. Ushenko, V.A. Ushenko, A.V. Dubolazov, V.O. Balanetskaya, N.I.Zabolotna, Mueller-matrix diagnostics of optical properties of polycrystalline networks of human blood plasma, Opt. Spectrosc. 112 (2012) 884–892.
  • [18] V.A. Ushenko, O.V. Dubolazov, A.O. Karachevtsev, Two wavelength Mueller matrix reconstruction of blood plasma films polycrystalline structure in diagnostics of breast cancer, Appl. Opt. 53 (2014) B128–B139.
  • [19] Y.A. Ushenko, G.D. Koval, A.G. Ushenko, O.V. Dubolazov, V.A. Ushenko, O.Yu Novakovskaia, Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis, J. Biomed. Opt. 21 (7) (2016), 071116.
  • [20] N. Ortega-Quijano, J.L. Arce-Diego, Mueller matrix differential decomposition, Chin. Opt. Lett. 36 (2011) 1942–1944.
  • [21] N. Ortega-Quijano, J.L. Arce-Diego, Depolarizing differential Mueller matrices, Chin. Opt. Lett. 36 (2011) 2429–2431.
  • [22] V. Devlaminck, Physical model of differential Mueller matrix for depolarizing uniform media, J. Opt. Soc. Am. 30 (2013) 2196–2204.
  • [23] R. Ossikovski, V. Devlaminck, General criterion for the physical reliability of the differential Mueller matrix, Opt. Lett. 39 (2014) 1216–1219.
  • [24] V. Devlaminck, R. Ossikovski, Uniqueness of the differential Mueller matrix of uniform homogeneous media, Opt. Lett. 39 (2014) 3149–3152.
  • [25] R. Ossikovski, O. Arteaga, Statistical meaning of the differential Mueller matrix of depolarizing homogeneous media, Opt. Lett. 39 (2014) 4470–4473.
  • [26] R. Ossikovski, Differential matrix formalism for depolarizing anisotropic media, Chin. Opt. Lett. 36 (2011) 2330–2332.
  • [27] A.G. Ushenko, A.V. Dubolazov, V.A. Ushenko, O.Y. Novakovskaya, Statistical analysis of polarization-inhomogeneous fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations, J. Biomed. Opt. 0001 21 (7) (2016), 071110.
  • [28] V.A. Ushenko, N.D. Pavlyukovich, L. Trifonyuk, Spatial-frequency azimuthally stable cartography of biological polycrystalline networks, Int. J. Opt. 2013(2013), 683174.
  • [29] V.P. Prysyazhnyuk, Yu.A. Ushenko, A.V. Dubolazov, A.G. Ushenko, V.A.Ushenko, Polarization-dependent laser autofluorescence of the polycrystalline networks of blood plasma films in the task of liver pathology differentiation, Appl. Opt. 55 (2016) B126–B132.
  • [30] O.V. Angelsky, S.G. Hanson, P.P. Maksimyak, A.P. Maksimyak, C.Yu Zenkova, P.V. Polyanskii, D.I. Ivanskyi, Influence of evanescent wave on birefringent microplates, Opt. Exp. 25 (2017) 2299–2311.
  • [31] O.V. Angelsky, A.Ya Bekshaev, P.P. Maksimyak, A.P. Maksimyak, S.G. Hanson, C.Yu Zenkova, Self-diffraction of continuous laser radiation in a dispersemedium with absorbing particles, Opt. Exp. 21 (7) (2013) 8922–8938.
  • [32] Yu. Ushenko, V. Bachynsky, O. Vanchulyak, A. Dubolazov, M. Garazdyuk, V.Ushenko, Jones-matrix mapping of complex degree of mutual anisotropy of birefringent protein networks during the differentiation of myocardium necrotic changes, Appl. Opt. 55 (2016) B113–B119.
  • [33] L.D. Cassidy, Basic concepts of statistical analysis for surgical research, J. Surg.Res. 128 (2005) 199–206.
  • [34] C.S. Davis, Statistical Methods of the Analysis of Repeated Measurements, Springer-Verlag, New York, 2002.
  • [35] A. Petrie, B. Sabin, Medical Statistics at a Glance, Blackwell Publishing, London, 2005.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c315c61-92a5-4a08-ba86-04fbfd702108
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.