PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Splitter plate as a flow-altering pier scour countermeasure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of an experimental study on the countermeasure of scour depth at circular piers are presented. Experiments were conducted for pier scour with and without a splitter plate under a steady, uniform clear-water flow condition. The results of pier scour without splitter plate were used as a reference. Different combinations of lengths and thicknesses of splitter plates were tested attaching each of them to a pier at the upstream vertical plane of symmetry. Two different median sediment sizes (d50 = 0.96 and 1.8 mm) were considered as bed sediment. The experimental results show that the scour depth consistently decreases with an increase in splitter plate length, while the scour depth remains independent of splitter plate thickness. In addition, temporal evolution of scour depth at piers with and without a splitter plate is observed. The best combination is found to be with a splitter plate thickness of b/5 and a length of 2b. Here, b denotes the pier diameter. An empirical formula for the estimation of equilibrium scour depth at piers with splitter plates is obtained from a multiple linear regression analysis of the experimental data. The flow fields for various combinations of circular piers with and without splitter plate including plain bed and equilibrium scour conditions were measured by using an acoustic Doppler velocimeter. The turbulent flow fields for various configurations are investigated by plotting the velocity vec-tors and the turbulent kinetic energy contours on vertical and horizontal planes. The splitter plate attached to the pier deflects the approach flow and thus weakens the strength of the downflow and the horseshoe vortex, being instrumental in reducing the equilibrium scour depth at piers. The proposed method of pier scour countermeasure is easy to install and cost effective as well.
Czasopismo
Rocznik
Strony
957--975
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
autor
  • Dipartimento di Ingegneria Civile, Università della Calabria, Rende, Italy
autor
  • Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
  • Dipartimento di Ingegneria Civile, Università della Calabria, Rende, Italy
  • Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata, Kolkata, India
  • Department of Hydraulic Engineering, State Key Laboratory of Hydro-Science and Engineering, Tsinghua University, Beijing, China
Bibliografia
  • 1. Arabani AP, Hajikandi H (2015) Reduction of local scour around a bridge pier using triple rectangular plates. Curr World Environ 10(1):47–55. doi: 10.12944/CWE.10.Special-Issue1.08
  • 2. Chabert J, Engeldinger P (1956) Etude des affouillements autour des piles de ponts. Serie A, Laboratoire National d’Hydraulique, Chatou, France (in French)
  • 3. Chiew Y (1992) Scour protection at bridge piers. J Hydraul Eng 118(9):1260–1269
  • 4. Dey S, Barbhuiya AK (2005) Time variation of scour at abutments. J Hydraul Eng 131(1):11–23
  • 5. Dey S, Das R (2012) Gravel-bed hydrodynamics: double-averaging approach. J Hydraul Eng 138(8):707–725. doi: 10.1061/(ASCE)HY.1943-7900.0000554
  • 6. Dey S, Bose SK, Sastry GLN (1995) Clear water scour at circular piers: a model. J Hydraul Eng 121(12):869–876. doi: 10.1061/(ASCE)0733-9429
  • 7. Dey S, Sumer BM, Fredsoe J (2006) Control of scour at vertical circular piles under waves and current. J Hydraul Eng 132(3):270–279. doi: 10.1061/(ASCE)0733-9429
  • 8. Ettema R (1980) Scour at bridge piers. Ph.D. Thesis, Department of Civil Engineering, University of Auckland, Auckland, New Zealand
  • 9. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126
  • 10. Grimaldi C, Gaudio R, Calomino F, Cardoso AH (2009) Countermeasures against Local Scouring at Bridge Piers: Slot and Combined System of Slot and Bed Sill. J Hydraul Eng 135(5):425–431
  • 11. Jahangirzadeh A, Basser H, Akib S, Karami H, Naji S, Shamshirband S (2014) Experimental and numerical investigation of the effect of different shapes of collars on the reduction of scour around a single bridge pier. PLoS ONE 9(6):98592. doi: 10.1371/journal.pone.0098592
  • 12. Khaple S, Hanmaiahgari PR, Gaudio R, Dey S (2017) Interference of an upstream pier on local scour at downstream piers. Acta Geophys 65(1):29–46. doi: 10.1007/s11600-017-0004-2
  • 13. Kolmogorov A (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl Akad Nauk SSSR 30:301–305
  • 14. Kumar V, Raju KGR, Vittal N (1999) Reduction of local scour around bridge piers using slots and collars. J Hydraul Eng 125(12):1302–1305. doi: 10.1061/(ASCE)0733-9429
  • 15. Lauchlan CS (1999) Pier scour countermeasures. PhD thesis, The University of Auckland, Auckland, New Zealand
  • 16. Lauchlan CS, Melville BW (2001) Riprap protection at bridge piers. J Hydraul Eng 127(5):412–418. doi: 10.1061/(ASCE)0733-9429
  • 17. Melville BW, Chiew YM (1999) Time scale for local scour at bridge piers. J Hydraul Eng 125(1):59–65. doi: 10.1061/(ASCE)0733-9429
  • 18. Melville BW, Hadfield AC (1999) Use of sacrificial piles as pier scour countermeasures. J Hydraul Eng 125(11):1221–1224. doi: 10.1061/(ASCE)0733-9429
  • 19. Odgaard AJ, Mosconi CE (1987) Streambank protection by submerged vanes. J Hydraul Eng 113(4):520–536. doi: 10.1061/(ASCE)0733-9429
  • 20. Ouyang HT, Lin CP (2016) Characteristics of interactions among a row of submerged vanes in various shapes. J. Hydro-Environ Res 13:14–25. doi: 10.1016/j.jher.2016.05.003
  • 21. Parker G, Toro-Escobar C, Voigt RL Jr (1998) Countermeasures to protect bridge piers from scour. St. Anthony Falls Laboratory, Minneapolis
  • 22. Tafarojnoruz A, Gaudio R, Dey S (2010) Flow-altering countermeasures against scour at bridge piers: a review. J Hydraul Res 48(4):441–452. doi: 10.1080/00221686
  • 23. Zarrati AR, Gholami H, Mashahir MB (2004) Application of collar to control scouring around rectangular bridge piers. J Hydraul Res 42(1):97–103. doi: 10.1080/00221686
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c30b730-4aa1-4b1e-a240-3b1b80d4b107
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.