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Abstract. An operator T ∈ B(H) is said to have the Putnam-Fuglede commutativity
property (PF property for short) if T ∗X = XJ for any X ∈ B(K,H) and any isometry
J ∈ B(K) such that TX = XJ∗. The main purpose of this paper is to examine if paranor-
mal operators have the PF property. We prove that k∗-paranormal operators have the PF
property. Furthermore, we give an example of a paranormal without the PF property.
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1. TERMINOLOGY

Throughout what follows, Z stands for the set of all integers, Z− for the set of all
negative integers, N for the set of all non-negative integers and N+ for the set of
all positive integers. Complex Hilbert spaces are denoted by H and K and the inner
product is denoted by 〈·,−〉. Moreover, we denote by B(H,K) the set of all bounded
operators from H into K. To simplify, we put B(H) := B(H,H). The identity operator
on H is denoted by IdH. If X is a subset of H, then spanX stands for the linear span
of X and X stands for the closure of X. We say that T ∈ B(H) is a contraction if
‖Tx‖ ≤ ‖x‖ for each x ∈ H. By a power-bounded operator we mean T ∈ B(H) such
that the sequence {‖Tn‖}n∈N is bounded. An operator T is said to be completely
nonunitary if T restricted to every reducing subspace of H is nonunitary. As usual,
T ∗ stands for the adjoint of T . We now recall some known classes of operators defined
on a Hilbert space H. An operator T ∈ B(H) is called hyponormal if T ∗T ≥ TT ∗, or
equivalently, ‖T ∗x‖ ≤ ‖Tx‖ for each x ∈ H. An operator T is (p, k)-quasihyponormal
if T ∗k((T ∗T )p− (TT ∗)p)T k ≥ 0. Usually (p, 0)-quasihyponormal operators are known
as p-hyponormal operators. Another generalization of hyponormal operators are
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k∗-paranormal operators. An operator T ∈ B(H) is k∗-paranormal if ‖T ∗x‖k ≤ ‖T kx‖
for each x ∈ H such that ‖x‖ = 1. Moreover, by a k-paranormal operator we mean an
operator T ∈ B(H) which satisfies ‖Tx‖k ≤ ‖T kx‖ for each x ∈ H such that ‖x‖ = 1.
For k = 2, k-paranormal and k∗-paranormal operators are called simply paranormal
and ∗-paranormal operators, respectively.

The inclusion relations between the above-mentioned classes of operators are
shown in Figure 1 (cf. [7, 11]).

k ∗ -paranormal

hyponormal -

-

paranormal - k + 1-paranormal

-

(p, k)-quasihyponormal
?

Fig. 1. Inclusions between classes of operators

An operator T ∈ B(H) is said to be of class C0· if lim inf
n→∞

‖Tnx‖ = 0 for each

x ∈ H. Note that a power-bounded operator T is of class C0· if and only if it is
strongly stable, i.e. Tn → 0 in the strong operator topology (see [12]). Furthermore,
we say that T is of class C·0 if its adjoint is of class C0·.

Definition 1.1 ([4]). An operator T ∈ B(H) is said to have the Putnam-Fuglede
commutativity property (PF property for short) if T ∗X = XJ for any X ∈ B(K,H)
and any isometry J ∈ B(K) such that TX = XJ∗.

2. INTRODUCTION

In [5] Duggal and Kubrusly have shown that a contraction T has the PF property
if and only if T is the orthogonal sum T = U ⊕ C of a unitary operator U and
an operator C which is a C·0 contraction. In the subsequent section, using isometric
asymptotes (see [8]), we show that the above statement is also true for power-bounded
operators. Moreover, we give the relation between operators with the PF property and
A-isometries.

In [11] we have shown that k-paranormal, k∗-paranormal, (p, k)-quasihyponormal
contractions and contractions of class Q have the PF property (see also [3,4,6]). Our
main purpose is to answer the question:Which of the above mentioned operators (not
necessarily contractions) have the PF property?

In [9] Kim has shown that p-hyponormal operators satisfy the general
Putnam-Fuglede property. So in particular they have the PF property. Until now,



The Putnam-Fuglede property for paranormal and ∗-paranormal operators 567

to the best of our knowledge, nothing was known about the PF property for noncon-
tractive k∗-paranormal and k-paranormal operators.

In Section 3, we show that k∗-paranormal operators have the PF property. Finally,
in Section 4 we present an example of a paranormal (k-paranormal) operator without
the PF property.

3. GENERAL REMARKS ON THE PF PROPERTY

In [5] Duggal and Kubrusly have shown the following result.

Proposition 3.1. If a nonunitary coisometry is a direct summand of a contraction
T , then T does not have the PF property. In particular, if a coisometry has the PF
property, then it is a unitary operator.

Appealing to the above result we now show the following theorem.

Theorem 3.2. A power-bounded operator T ∈ B(H) has the PF property if and only
if it is a direct sum of a unitary operator and an operator of class C·0.

Proof. For x, y ∈ H, we set [x, y] := glim{〈T ∗nx, T ∗ny〉}n∈N, where glim denotes the
Banach limit. In this way we obtain a new semi-inner product on H. Thus the factor
space H/H0, where H0 stands for the linear manifold H0 := {x ∈ H|[x, x] = 0}, is an
inner product space endowed with the inner product given by [x+H0, y+H0] = [x, y]
for x, y ∈ H. Let K denote the resulting Hilbert space obtained by a completion of
H/H0. Denote by Q the canonical embedding Q : H 3 x 7→ x+H0 ∈ K. Note that

‖QT ∗x‖ = ‖Qx‖, x ∈ H.

Hence there is an isometry V : K → K such that QT ∗ = V Q, so from the PF property
we deduce that

QT ∗ = V Q⇐⇒ TQ∗ = Q∗V ∗ =⇒ T ∗Q∗ = Q∗V ⇐⇒ QT = V ∗Q.

Therefore, R(Q∗) is an invariant subspace for T and T ∗. This means that R(Q∗) is
reducing for T .

Observe that, for all x, y ∈ H, we have

[Qx,Qy] = [V nQx,QT ∗ny] = 〈Q∗V nQx, T ∗ny〉 = 〈T ∗nQ∗Qx, T ∗ny〉 (3.1)

and
glim{〈T ∗nQ∗Qx, T ∗ny〉}n∈N = [QQ∗Qx,Qy]. (3.2)

A combination of (3.1) and (3.2) yields [Qx,Qy] = [Q(Q∗Qx), Qy]. Since R(Q) is
dense in K, it follows that Q = QQ∗Q, so (Q∗Q)2 = Q∗Q. This means that P :=
Q∗Q is a projection. Additionally, by (3.1), we get QQ∗ = IdK. Therefore, R(Q∗) =
R(Q∗QQ∗) ⊂ R(Q∗Q) ⊂ R(Q∗). As a result, R(P ) = R(Q∗). On the other hand, for
x ∈ H, we get

‖Qx‖2 = [Qx,Qx] = 〈Q∗Qx, x〉 = 〈Px, x〉 = ‖Px‖2,
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and so N (P ) = H0. Hence H = N (P )⊕R(P ) = H0⊕R(Q∗). Take x ∈ R(Q∗). Thus
T ∗x ∈ R(Q∗), because R(Q∗) is reducing for T . Consequently,

‖T ∗x‖ = ‖PT ∗x‖ = ‖QT ∗x‖ = ‖Qx‖ = ‖Px‖ = ‖x‖.

This finally implies that T ∗ is an isometry on R(Q∗), so by Proposition 3.1 it is a
unitary operator on R(Q∗).

It only remains to verify that T ∗ is strongly stable on H0. To see this, fix x ∈ H0.
Then lim inf

n→∞
‖T ∗nx‖2 ≤ glim{‖T ∗nx‖2}n∈N = 0. Hence for each ε > 0 there exists

k ∈ N such that ‖T kx‖ < ε, so for all m > k we have

‖Tmx‖ = ‖Tm−kT kx‖ ≤ ‖Tm−k‖‖T kx‖ ≤ ε sup
n∈N
‖Tn‖.

As a consequence, lim
n→∞

‖T ∗nx‖ = 0.

The converse implication is true for all bounded operators (see the proof
of [5, Theorem 1]).

It is plain that Theorem 3.2 does not hold for all bounded operators. To see this,
it suffices to consider the operator 2IdH having the PF property.

Proposition 3.3. If an operator T ∈ B(H) has the PF property, then T is a direct
sum of a unitary operator and an operator G ∈ B(H0), which does not satisfy the
equation GX = XJ∗ for any nonzero X ∈ B(K,H0) and any isometry J ∈ B(K).

Proof. Suppose that TX = XV ∗ for some X ∈ B(K,H) and some isometry V ∈ B(K).
Owing to the PF property we have T ∗X = XV . By this, for all x, y ∈ H, we get

〈XX∗x, y〉 = 〈X∗x,X∗y〉 = 〈V X∗x, V X∗y〉 = 〈V X∗x,X∗T ∗y〉 =
= 〈XVX∗x, T ∗y〉 = 〈T ∗XX∗x, T ∗y〉 = 〈XX∗x, TT ∗y〉.

Hence TT ∗ = Id on R(XX∗), but R(XX∗) = R(X) is reducing for T , so T |R(X)
is

a coisometry.
Let T = T ′ ⊕ C with respect to H = R(X) ⊕ N (X∗). It turns out that T ′ has

the PF property. Indeed, if Y T ′∗ = JY for some Y ∈ B(H,K′) and some isometry
J ∈ B(K′), then

(Y ⊕ 0)T ∗ = (Y ⊕ 0)(T ′∗ ⊕ C∗) = (J ⊕ Id)(Y ⊕ 0).

Hence, by the PF property of T , we get

(Y ⊕ 0)(T ′ ⊕ C) = (J∗ ⊕ Id)(Y ⊕ 0),

and so Y T ′ = J∗Y . This means that T ′ also has the PF property. As a consequence,
by Proposition 3.1, T ′ = T |R(X∗) is a unitary operator.

Next, let G ∈ B(H0) be a completely nonunitary part of T . By the above argument,
G has the PF property. Hence if G satisfies GX = XJ∗ for some X ∈ B(K,H0) and
some isometry J ∈ B(K), then X = 0, which finishes the proof.
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Remark 3.4. In view of Proposition 3.3 a completely nonunitary operator T ∈ B(H)
has the PF property if and only if there does not exist X ∈ B(K,H) and an isometry
J ∈ B(K) such that TX = XJ∗.

If T satisfies the PF property in a nontrivial way (that is, with a nonzero X), then
we have

‖(XX∗) 1
2x‖ = ‖X∗x‖ = ‖X∗T ∗x‖ = ‖(XX∗) 1

2T ∗x‖, x ∈ H.

Thus there exists an isometry V such that V (XX∗)
1
2 = (XX∗)

1
2T ∗. This means

that T ∗ is an A-isometry for A = XX∗ (for more information about A-isometries
see [2, 13]). Hence the relation between the PF property and A-isometries can be
formulated as follows.

Proposition 3.5. A completely nonunitary operator T has the PF property if and
only if its adjoint is not an A-isometry for any positive operator A.

4. THE PF PROPERTY FOR k∗-PARANORMAL OPERATORS

In this section we show that a k∗-paranormal operator has PF property even if it is
not a contraction.

Theorem 4.1. Each k∗-paranormal operator has the PF property.

Proof. Take k ≥ 2. Let T ∈ B(H) be a (k − 1)∗-paranormal operator. Suppose that
there exist an operator X ∈ B(K,H) and an isometry V ∈ B(K) such that

TX = XV ∗. (4.1)

Take x0 ∈ R(X). There exists x ∈ K such that x0 = Xx. Let us define the sequence
{xn}n∈Z as follows:

xn :=

{
XV nx, n > 0,

XV ∗−nx, n < 0.

By (4.1), it is immediate that Txn+1 = xn. Additionally, we have

‖xn‖ ≤ max{‖XV |n|x‖, ‖XV ∗|n|x‖} ≤ ‖X‖‖x‖ =:M, n ∈ Z.

Hence the sequence {‖xn‖}n∈Z is bounded by M . Each k∗-paranormal operator is
(k+ 1)-paranormal (cf. [11, Proposition 4.8]), so T is a k-paranormal operator. Thus

‖xn‖k = ‖Txn+1‖k ≤ ‖T kxn+1‖‖xn+1‖k−1 = ‖xn−k+1‖‖xn+1‖k−1, n ∈ Z.

Using the mean inequality and putting n+ k − 1 instead of n we get

‖xn+k−1‖ ≤
‖xn‖+ (k − 1)‖xn+k‖

k
, n ∈ Z.
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Next, multiplying both sides of this inequality by k and subtracting ‖xn‖+ ‖xn+1‖+
‖xn+2‖+ . . .+ ‖xn+k−1‖ we obtain

− ‖xn‖ − ‖xn+1‖ − ‖xn+2‖+ . . .− ‖xn+k−2‖+ (k − 1)‖xn+k−1‖ ≤
≤ −‖xn+1‖ − ‖xn+2‖ − ‖xn+3‖+ . . .− ‖xn+k−1‖+ (k − 1)‖xn+k‖.

Thus the sequence {An}n∈Z, where

An := −‖xn‖ − ‖xn+1‖ − ‖xn+2‖+ . . .− ‖xn+k−2‖+ (k − 1)‖xn+k−1‖, n ∈ Z,

is increasing. We now show that the sequence {An}n∈Z is constant equal to 0. Let us
observe that for small enough l and big enough m we get∣∣∣ m∑

n=l

An

∣∣∣ = ∣∣∣ m∑
n=l

(−‖xn‖ − ‖xn+1‖+ . . .− ‖xn+k−2‖+ (k − 1)‖xn+k−1‖)
∣∣∣ =

= |(k − 1)‖xm+k−1‖+ (k − 2)‖xm+k−2‖+ . . .+ ‖xm+1‖−
− (‖xl‖+ 2‖xl+1‖+ 3‖xl+2‖+ . . .+ (k − 1)‖xl+k−2‖)| ≤Mk(k − 1).

Thus

(m− l + 1)Al =

m∑
n=l

Al ≤
m∑
n=l

An ≤Mk(k − 1).

Hence

Al = lim
m→∞

m− l + 1

m
Al ≤ lim

m→∞

Mk(k − 1)

m
= 0.

Similarly, we deduce that

(m− l + 1)Am =

m∑
n=l

Am ≥
m∑
n=l

An ≥ −Mk(k − 1).

Therefore,

Am = lim
l→−∞

m− l + 1

−l
Am ≥ lim

l→−∞

−Mk(k − 1)

−l
= 0.

Hence An = 0, thus ‖xn‖+ ‖xn+1‖+ . . .+ ‖xn+k−2‖ = (k − 1)‖xn+k−1‖. As before,
we get

‖xn+k−1‖ =
‖xn‖+ (k − 1)‖xn+k‖

k
. (4.2)

On the other hand,

‖xn‖+ (k − 1)‖xn+k‖
k

≥ k

√
‖xn‖‖xn+k‖k−1 ≥ ‖xn+k−1‖,

so we have equality in the mean inequality. It follows that ‖xn‖ = ‖xn+k‖, so by (4.2)
we obtain ‖xn‖ = ‖xn+1‖ for each n ∈ N. In particular, ‖Tx0‖ = ‖x−1‖ = ‖x0‖. Thus
‖Tx0‖ = ‖x0‖ for each x0 ∈ R(X). This means that T is an isometry on the invariant
subspace R(X).
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Since TX = XV ∗, it follows that T |R(X)
is a surjection. Thus it is a unitary

operator. We can express T with respect to H = R(X)⊕N (X∗) as

T =

[
T11 T21
0 T22

]
,

where T11 = T |R(X)
, T21 ∈ B(N (X∗),R(X)) and T21 ∈ B(N (X∗)). Hence

T ∗ =

[
T ∗11 0
T ∗21 T ∗22

]
.

Taking into account that T is (k − 1)∗-paranormal, we have

(1 + ‖T ∗21x‖2)k−1 = (‖x‖2 + ‖T ∗21x‖2)k−1 = ‖T ∗(x, 0)‖2(k−1) ≤ ‖T k−1(x, 0)‖2 =

= ‖T k−1
11 x‖2 = ‖x‖2 = 1

for each x ∈ R(X) such that ‖x‖ = 1. As a result, T21 = 0 and T = T11 ⊕ T22. Since
TX = XV ∗, it follows that

XV = Id |R(X)
XV = T ∗11T11XV = T ∗TXV = T ∗XV ∗V = T ∗X.

This completes the proof.

As an immediate consequence of Theorem 4.1 we obtain the following corollary.

Corollary 4.2. Each ∗-paranormal operator has the PF property.

5. THE PF PROPERTY FOR PARANORMAL OPERATORS

An operator T is log-hyponormal if log(T ∗T ) ≥ log(TT ∗). Mecheri have shown that
log-hyponormal operators satisfy the Putnam-Fuglede theorem (see [10]). In particu-
lar, this fact implies that all log-hyponormal operators have the PF property.

In [1] Andô has shown (see Theorem 2 therein) that each log-hyponormal operator
which satisfies N (T ) = N (T ∗) is paranormal. Thus the log-hyponormal operators
are not far from being paranormal. Hence it can be surprising that there exists a
paranormal operator without the PF property. In this section we give a suitable
example of such an operator. To do this first we prove the following lemma.

Lemma 5.1. There are real bounded sequences {xn}n∈N+
and {yn}n∈N+

such that{
xn = ynxn+1, n ∈ N+,

yn+1 = (x2n+1 + 1)yn, n ∈ N+.

Proof. Let us define a sequence {yn}n∈N+
such that{

y1 = 1, y2 = 2,

yn+2 = yn+1−yn+ynyn+1

yn
, n ∈ N+.
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By the definition of {yn}n∈N+
, we have

yn+2 − yn+1 =
yn+1 − yn

yn
, n ∈ N+, (5.1)

so by induction we can deduce that the sequence {yn}n∈N+ is positive and increasing.
Hence yn ≥ 2 for n ≥ 2. Moreover, y3−y2 = 3−2 = 1, so again using (5.1) we can easily
show that yn+1−yn ≤ 1

2n−2 for n ≥ 2. Thus yn =
∑n

i=2(yi−yi−1)+y1 ≤ 4. It follows

that the positive sequence {yn}n∈N+
is bounded. Now, if we set xn+1 =

√
yn+1

yn
− 1

and x1 = 1, it is easy to see that these two sequences satisfy the desired condition.

Example 5.2. Let H be a Hilbert space with an orthonormal basis {en}n∈Z ∪
{fi}i∈N+

. Let us define an operator S ∈ B(H) by the formula

{
S(en) = en+1, n ∈ Z,
S(fk) = xkek + ykfk+1, k = 1, 2, . . . ,

where {xn}n∈N+
and {yn}n∈N+

are as in Lemma 5.1.

Since the sequences {xn}n∈N+
and {yn}n∈N+

are bounded, the operator S is
bounded. We can express this operator with the help of the graph given in Figure 2.

. . .
1 - e0

1 - e1
1 - e2

1 - e3
1 - . . .

f1

x1

6

y1 - f2

x2

6

y2 - f3

x3

6

y3- . . .

Fig. 2. The graph representation of the operator S

An alternative definition of paranormal operators is as follows: An operator T ∈
B(H) is paranormal if and only if |T 2|2− 2λ|T |2 + λ2IdH is nonnegative for all λ > 0
(cf. [1]). This means that T is paranormal if and only if ‖T 2h‖2−2λ‖Th‖2+λ2‖h‖2 ≥ 0
for all λ > 0 and h ∈ H.

Using this definition we now show that S is paranormal. Let us fix an arbitrary
h =

∑
n∈Z αnen +

∑
k∈N+

βkfk and λ > 0. Hence h =
∑

n∈N hn + g, where g :=∑
k∈Z−

αkek and hn := αnen + βn+1fn+1. First, observe that ‖S2g‖ = ‖Sg‖ = ‖g‖.
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Thus ‖S2g‖2−2λ‖Sg‖2+λ2‖g‖2 = (λ−1)2‖g‖2. Using the relation between {xn}n∈N+

and {yn}n∈N+ we can conduct the following calculations:

‖S2hn‖2 − 2λ‖Shn‖2 + λ2‖hn‖2 =

= ‖S2(αnen + βn+1fn+1)‖2−
− 2λ‖S(αnen + βn+1fn+1)‖2 + λ2‖(αnen + βn+1fn+1)‖2 =

= ‖(2xn+1βn+1 + αn)en+2 + yn+1yn+2βn+1fn+3‖2−
− 2λ‖(xn+1βn+1 + αn)en+1 + yn+1βn+1fn+2‖2+
+ λ2‖(αnen + βn+1fn+1)‖2 = |2xn+1βn+1 + αn|2 + y2n+1y

2
n+2−

− 2λ(|xn+1βn+1 + αn|2 + |yn+1βn+1|2) + λ2(|αn|2 + |βn+1|2) =
= |(1− λ)αn + 2xn+2yn+1βn+1|2 + |βn+1|2(λ− (x2n+2y

2
n+1 + y2n+1))

2+

+ |βn+1|2(y2n+1y
2
n+2 − (x2n+2y

2
n+1 + y2n+1)

2).

The last part of this formula is equal to 0. Hence

‖S2hn‖2 − 2λ‖Shn‖2 + λ2‖hn‖2 ≥ 0.

Finally, let us observe that each of the sets {g} ∪ {hn}n∈N, {Sg} ∪ {Shn}n∈N and
{S2g} ∪ {S2hn}n∈N is orthogonal. Thus

‖S2h‖2 − 2λ‖Sh‖2 + λ2‖h‖2 =
∑
n∈N

(‖S2hn‖2 − 2λ‖Shn‖2 + λ2‖hn‖2)+

+ ‖S2g‖2 − 2λ‖Sg‖2 + λ2‖g‖2 ≥ 0.

This means that S is paranormal.
It remains to show that the operator S does not have the PF property. In-

deed, S satisfies the equality PS∗ = UP , where P is orthogonal projection on
E := span{en|n ∈ Z} and U is a direct sum of a bilateral backward shift on E and
the identity operator, but

PSf1 = x1e1 6= 0 = UPf1.

A part of Theorem 7.1.7 from [7] says that a paranormal operator is k-paranormal
for each k ∈ N. Owing to this result we see that the operator S from Example 5.2 is
k-paranormal for each k = 2, 3, . . .. On the other hand, due to Theorem 4.1, S is not
k∗-paranormal for any k ∈ N+.

In [11] it was proved that each k∗-paranormal operator is (k+1)-paranormal. We
conclude the paper with the ensuing observation.

Remark 5.3. The class of k∗-paranormal operators is not equal to the class of
(k + 1)-paranormal operators.
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