PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hazards evaluation of a valuable vulnerable sand-wave field forage fish habitat in the marginal Central Salish Sea using a submersible

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Salish Sea is a marginal inland sea of the NE Pacific (NW North America) that includes the Georgia Strait-Gulf Islands Archipelago of British Columbia, Canada and the San Juan Archipelago, Strait of Juan de Fuca, and the Lower Puget Sound of Washington State, USA. This marginal seafloor has been extensively mapped and according to criteria presented and discussed at GeoHab conferences critical marine benthic habitat types are identified. One such habitat that is the focus of this paper is the deep-water sub-tidal habitat of Pacific sand lance (PSL). The PSL (Ammodytes personatus) is a critical forage fish for a variety of mammals, birds and fish including minke whales and salmon as it preys upon zooplankton and acts as an energy transfer species from the lower to higher trophic levels. Pacific sand lance seeks refuge and overwinters in sand-wave fields consisting of dynamic bedforms. The species prefers loosely packed, well-aerated, well-sorted, medium- to coarse-grain (∼1 phi [φ], 500 µm) sand that it can burrow into easily. Such geomorphic features as active dynamic bedforms provide preferable habitats for PSL and depends on specific and unique oceanographic processes that can maintain the habitat's morphology and grain sizes. Understanding these processes is essential in forecasting alteration or destruction of such features, including changes that may be brought about by sea level rise. Using the five-person submersible Cyclops 1, we recently examined a well-studied sand-wave field in the San Juan Archipelago of Washington State, USA, which has been reported to harbor up to 12 million PSL. Observations, video recordings, and photography from this vehicle allowed us to assess modern seafloor processes of the central Salish Sea that can be used along with fish and sediment sample data to determine physical preferences this fish needs to sustain its population. Changes in the seafloor current regime, sediment source, and anthropogenic disturbances can critically alter these dynamic bedforms. This research provides insight into the structure of these bedforms, their composition, their persistence, their resilience to disturbance, and the susceptibility as an impact and becoming impacted.
Czasopismo
Rocznik
Strony
1--19
Opis fizyczny
Bibliogr. 62 poz., fot., map., rys., tab., wykr.
Twórcy
  • Center for Habitat Studies, Moss Landing Marine Labs, Moss Landing, CA, USA
  • Friday Harbor Labs, University of Washington, Friday Harbor, WA, USA
  • Tombolo Mapping Lab, SeaDoc Society, Orcas Island, WA, USA
  • Friday Harbor Labs, University of Washington, Friday Harbor, WA, USA
  • Tombolo Mapping Lab, SeaDoc Society, Orcas Island, WA, USA
autor
  • Tombolo Mapping Lab, SeaDoc Society, Orcas Island, WA, USA
  • Washington Department of Fish & Wildlife, Mill Creek, WA, USA
Bibliografia
  • 1. Allen, J.R.L., 1968. Current ripples: their relation to patterns of water and sediment motion. North-Holland Publishing Co., Amsterdam, 433 pp.
  • 2. Auster, P.J., Steward, L.L., 1986. Sand lance. Species Profiles: Life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic), US Fish and Wildlife Service Biological Report 82, 1-11.
  • 3. Auster, P.J., Malatesta, R.J., LaRosa, S.C., 1995. Patterns of microhabitat utilization by mobile megafauna on the southern New England (USA) continental shelf and slope. Mar. Ecol. Prog. Ser. 127, 77-85.
  • 4. Baker, M.R., Matta, M.E., Beaulieu, M., Parris, N., Huber, S., Graham, O.J., Pham, T., Sisson, N.B., Heller, C.P., Witt, A., O’Neill, M.R., 2019. Intra-seasonal and inter-annual patterns in the demographics of sand lance and response to environmental drivers in the North Pacific. Mar. Ecol. Press Ser. 617-618, 221-244.
  • 5. Baker, M.R., Greene, H.G., Aschoff, J. Johnson, K., Aitoro, E., Bates, E., Sealover, N., Speed, L. in prep. a. Association between Pacific sand lance morphology and sediment attributes of multiple deepwater bedform habitats - evidence for local adaptation.
  • 6. Baker M.R, Greene H.G., Aschoff, J., Aitoro, E., Bates, E., Hoge, M., Aitoro, E., Childers, S., Johnson, K., Sealover, N., Tinnon, A., Bynum, K., Lopez, J., Thomson, A., Newton, J.A., in prep. b. Bathymetric structure and sediment association and distribution of Pacific sand lance (Ammodytes personatus) in a benthic sand wave field habitat.
  • 7. Barrie, J.V., Conway, K.W., Picard, K., Greene, H.G., 2009. Large scale sedimentary bedforms and sediment dynamics on a glaciated tectonic continental shelf: Examples from the Pacific margin of Canada. Cont. Shelf Res. 29, 796-806.
  • 8. Baker, M.R., Williams, K., Greene, H.G., Aschoff, J., Greufe, C., Lopes, H., Towler, R., 2021. Use of manned submersible and autonomous stereo-camera array to assess forage fish and associated subtidal habitat. Fish. Res. 243, 106067. https://doi.org/10.1016/j.fishres.2021.106067
  • 9. Barnard, P.L., Erikson, L.H., Rubin, D.M., 2012. Analyzing bedforms mapped using multibeam sonar to determine regions bedload sediment transport patterns in the San Francisco costal system. International Association of Sedimentology Special Publication 44, 273-294.
  • 10. Bizzarro, J.J., Peterson, A.N., Blaine, J.N., Balaban, J.P., Greene, H.G., Summers, A.P., 2016. Burrowing behavior, morphology, and habitat of the Pacific sand lance (Ammodytes personatus). Fish. Bull. 114, 445-460.
  • 11. Blaine, J., 2006. Pacific sand lance (Ammodytes hexapterus) present in the sandwave field of central San Juan Channel, WA: Abundance, density, maturity, and sediment association. Fish 492 Research Apprentice, Friday Harbor Labs, Friday Harbor, WA, 24 pp., Unpublished: Class Paper.
  • 12. Blott, S.J., Pye, K., 2001. GRADISTAT: A grain size distribution and Statistics package for the analysis for unconsolidated sediments. Tech. Comm., Earth Surf. Proc. Land. 26, 1237-1248. https://doi.org/10.1002/esp.261
  • 13. Cattaneo, A., Correggiari, A., Marsset, T., Thomas, Y., Marsset, B., Trincardi, F., 2004. Seafloor undulation pattern on the Adriatic Shelf and comparison to deep-water sediment waves. Mar. Geol. 213, 121-148.
  • 14. Chin, J.L., Wong, F.L., Carlson, P.R., 1998. Anthropogenic impacts on the Bay floor of west-central San Francisco Bay (CA). EOS, Am. Geophys. Union Trans. 79 (45), F511-F512.
  • 15. Chin, J.L., Wong, F.L., Carlson, P.R., 2004. Shifting shoals and shattered rocks - How man has transformed the floor of west-central San Francisco Bay. U.S. Geological Survey Circular 1259, 30 pp.
  • 16. Dick, M.H., Warner, I.M., 1982. In: Pacific sand lance Ammodytes hexapterus Pallas, 15. The Kodiak Island group, Alaska, Syesis, 43-50.
  • 17. Geiger, A.C., 1987. Trophic interactions and diurnal activity patterns of the Pacific sand lance, Ammodytes hexapterus. University of Washington, San Juan Island, Washington, Marine Fish Biology Class Papers, Univ. Washington.
  • 18. Gerstner, C.L., 1998. Use of substratum ripples for flow refuging by Atlantic cod Gadus morhua. Environ. Biol. Fish. 51, 455-460.
  • 19. Gerstner, C.L., Webb, P.W., 1998. The station-holding performance of plaice, Pleuronectes plates, on artificial substratum ripples. Can. J. Zool. 76, 200-208.
  • 20. Goff, J.A., Mayer, L.A., Traykovski, P., Buynevich, I., Wilkens, R., Raymond, R., Glang, G., Evans, R.L., Olsen, H., Jenkis, C., 2005. Detailed investigation of sorted bedforms, or “rippled scour depressions” within the Martha’s Vineyard Coastal Observatory Massachusetts. Cont. Shelf Res. 25, 461-484.
  • 21. Greene, H.G., Barrie, J.V., 2011. Potential Marine Benthic Habitats of the San Juan Archipelago, Geological Survey of Canada Marine Map Series, 4 Quadrants, 12 sheets, scale 1:50,000.
  • 22. Greene, H.G., Vallier, T.V., Bizzarro, J.J., Watt, S., Dieter, B.E., 2007. Impacts of bay floor disturbances on benthic habitats in San Francisco Bay. In: Todd, B.J., Greene H.G., (Eds.), Mapping the Seafloor for Habitat Characterization, Geological Association of Canada, Sp. Pap. 47, 401-419.
  • 23. Greene, H.G, Wyllie-Echeverria, T, Gunderson, D., Bizzarro, J., Barrie, V., Fresh, K., Robinson, C., Cacchione, D., Penttila, D., Hampton, M., Summers, A., 2011. Deep-water Pacific sand lance (Ammodytes hexapterus) habitat evaluation and prediction for the Northwest Straits Region, Final Report to Northwest Straits Commission. SeaDoc/Tombolo Mapping Lab and Friday Harbor Labs, Orcas Island, WA, 21 pp.
  • 24. Greene, H.G., Endris, C., Vallier, T., Golden, N., Cross, J., Ryan, H., Dieter, B., Niven, E., 2013. Sub-tidal benthic habitats of central San Francisco Bay and offshore Golden Gate area - A review. Mar. Geol. 345, 31-46.
  • 25. Greene, H.G., Cacchione, D.A., Hampton, M.A.Lucieer, V., Dolan, M., Lecours, V. (Eds.), 2017. Characteristics and dynamics of a large sub-tidal sand wave field - Habitat for the Pacific sand lance (Ammodytes peronatus), Salish Sea, Washington, USA. Marine Geomorphometry, Journal of Geosciences 7 (107), 322-338. https://doi.org/10.3390/geosciences7040107
  • 26. Greene, H.G., Baker, M., Aschoff, J., 2020. A dynamic bedforms Habitat for the forage fish Pacific sand lance, San Juan Islands, WA USA. In: Harris, P., Baker, E. (Eds.), Seafloor Geomorphology as Benthic Habitat, GeoHab Atlas of Seafloor Geomorphic Features as Benthic Habitats. 2nd edn., Chapter 14, Elsevier Sci.
  • 27. Gutierrez, B.T., Voulgaris, G., Thieler, E.R., 2005. Exploring the persistence of sorted bedforms on the inner-shelf of Wrightsville Beach, North Carolina. Cont. Shelf Res. 25, 65-90.
  • 28. Habgood, E.L., Kenyon, N.H., Masson, D.G., Akhmetzhanov, A., Weaver, P.P.E., Gardner, J., Mulder, T., 2003. Deep-water sediment wave fields, bottom current sand channels and gravity flow channel-lobe systems: Gulf of Cadiz, NE Atlantic. Sedimentology 50, 483-510.
  • 29. Haynes, T.B., Ronconi, R.A., Burger, A.E., 2007. Habitat use and behavior of the Pacific sand lance (Ammodytes hexapterus) in the shallow subtidal region of southwestern Vancouver Island. Northwestern Naturalist 88, 155-167.
  • 30. Healy, M.C., 1984. Laboratory spawing of Ammodytes hexaterus from the Pacific coast of North America with a description of its eggs and early larvae. Copeia 1, 242-244.
  • 31. Hobson, E.S., 1986. Predation on the Pacific sand lance, Ammodytes hexapterus, (Pisces: Ammodytidae), during the transition between day and night in southeastern Alaska. Copeia 1, 223-226.
  • 32. Hoekstra, P., Bell, P., van Santen, P., Roode, N., Levoy, F., Whitehouse, R., 2004. Bedform migration and bedload transport on an intertidal shoal. Cont. Shelf Res. 24, 1249-1269.
  • 33. Holland, G.J., Greenstreet, S.P.R., Gibb, I.M., Fraser, H.M., Robertson, M.R., 2005. Identifying sandeel Ammodytes marinus sediment habitat preferences in the marine environment. Mar. Ecol. Prog. Ser. 303, 269-282.
  • 34. Hughes Clarke, J.E., Mayer, L.A., Wells, D.E., 1996. Shallow-water imaging multibeam sonars: A new tool for investigating seafloor processes in the coastal zone and on the continental shelf. Mar. Geophys. Res. 18, 607-629.
  • 35. Matta, M.E., Baker, M.R., 2020. Age and growth of Pacific sand lance (Ammodytes personatus) at the latitudinal extremes of the Gulf of Alaska large marine ecosystem. Northwest Naturalist 101 (1), 34-49. https://doi.org/10.1898/1051- 1733- 101.1.34
  • 36. Meyer, T.L., Cooper, R.A., Langton, R.W., 1979. Relative abundance, behavior, and food habits of the American sand lance, Ammodytes americanus, from the Gulf of Maine. Fish. Bull. 77, 243-253.
  • 37. Mosher, D.C., Thomson, R.E., 2000. Massive submarine sand dunes in the eastern Juan de Fuca Strait, British Columbia, Marine Sand Wave Dynamics. In: Proceedings of an International Workshop, 23—24 March 2000, Lille, France, 131-142.
  • 38. Mosher, D.C., Thomson, R.E., 2002. The Foreslope Hills: large-scale, fine-grained sediment waves in the Strait of Georgia, British Columbia. Mar. Geol. 192, 275-295.
  • 39. Moulton, L.L., Penttila, D.E., 2000. Forage fish spawning distribution in San Juan County and protocols for sampling intertidal and nearshore regions. In: San Juan County Forage Fish Assessment Project, Friday Harbor, WA, 53 pp.
  • 40. Mullan, Sean, 2017. Tidal sedimentology and geomorphology in the central Salish Sea straits, British Columbia and Washington State. PhD Thesis, University of Victoria, Victoria B.C., Canada 1-255.
  • 41. Norcross, B.L., Blanchard, A., Holladay, B.A., 1999. Comparison of models for defining nearshore flatfish nursery areas in Alaskan waters. Fish. Oceanogr. 8, 50-67.
  • 42. Normark, W.R., Piper, D.J.W., Posamentier, H., Pirmez, C., Migeon, S., 2002. Variability in form and growth of sediment waves on turbidite channel levees. Mar. Geol. 192, 23-58.
  • 43. Ostrand, W.D., Gotthardt, T.A., Howlin, S., Robards, M.D., 2005. Habitat selection models for the Pacific sand lance (Ammodytes hexapterus) in Prince William Sound, Alaska. Northwestern Naturalist 86, 131-143.
  • 44. Orr, E.L., Orr, W.N., 1996. Geology of the Pacific Northwest. The McGraw-Hill Companies, Inc., San Francisco.
  • 45. Orr, J.W, Wildes, S., Kai, Y., Raring, N., Nakabo, T., Katugin, O., Guyon, J., 2015. Systematics of North Pacific sand lances of the genus Ammodytes based on molecular and morphological evidence, with the description of a new species from Japan. Fish. Bull. 113 (2), 129-156.
  • 46. Penttila, D., 2007. Marine forage fishes in Puget Sound Tech. Rep. No. 2007-03, Puget Sound Nearshore Partnership, Seattle District, ACOE, Seattle, WA, 27 pp.
  • 47. Peters, W., 2018. Microfibres in Pacific sand lance (Ammodytes personatus) burying habitats in the Strait of Georgia. Simon Fraser, Univ., British Columbia, Canada. Masters Thes., 57 pp. http://remmain.rem.sfu.ca/theses/PetersWillem_2019_MRM718.pdf
  • 48. Pinto, J.M., 1984. Laboratory spawning of Ammodytes hexapterus from the Pacific Coast of North America with a description of its eggs and early larvae. Copeia, 242-244.
  • 49. Quinn, T., 1999. Habitat characteristics of an intertidal aggregation of Pacific sand lance (Ammodytes hexapterus) at a North Puget Sound beach in Washington. Northwest Science 73 (1), 44-49.
  • 50. Reay, P.J., 1970. Synopsis of biological data on North Atlantic sandeels of the genus Ammodytes. FAO Fisheries Synopsis No. 82, Rome, Italy: Food and Agriculature Organization of the United Nations, 48 pp.
  • 51. Robards, M.D., Piatt, J.F., Rose, G.A., 1999a. Maturation, fecundity, and intertidal spawning of Pacific sand lance in the northern Gulf of Alaska. J. Fish Biol. 54, 1050-1068.
  • 52. Robards, M.D., Willson, M.F., Armstrong, R.H., Piatt, J.F., 1999b. Sand lance: a review of biology and predator relations and annotated bibliography, Final Rep. 99346, Exxon Valdez Oil Spill Restoration Project, 327 pp.
  • 53. Robinson, C.L., Hrynyk, D., Barrie, J.V., Schweigert, J., 2013. Identifying subtidal burying habitat of Pacific sand lance (Ammodytes hexapterus) in the Strait of Georgia, British Columbia, Canada. Prog. Oceanogr. 115, 119-128.
  • 54. Selleck, J.R., Gibson, C.F., Shull, S., Gaydos, J.K., 2016. Nearshore distribution of Pacific sand lance (Ammodytes personatus) in the inland waters of Washington State. Northwestern Naturalist 96 (3), 185-195.
  • 55. Sisson, N., Baker, M.R., 2017. Feeding ecology of Pacific sand lance in the San Juan Archipelago. Marine and Coastal Fisheries: Dynamics. Management and Ecosystem Science 9 (1), 612-625.
  • 56. Stoner, A.W., Titgen, R.H., 2003. Biological structures and bottom type influencehabitat choices made by Alaska flatfishes. J. Experimental Mar. Biol. Ecol. 292 (1), 43-59.
  • 57. Todd, B.J., 2005. Morphology and composition of submarine barchan dunes on the Scotian Shelf. Canadian Atlantic margin, Geomorphology 67, 487-500.
  • 58. Verhagen, H.J., 1989. Sand waves along the Dutch coast. Coast. Eng. 13, 129-147.
  • 59. Wentworth, C.K., 1929. Method of computing mechanical composition of sediments. Geol. Soc. Am. Bull. 40, 771-790.
  • 60. Wright, P.J., Jensen, H., Tuck, I., 2000. The influence of sediment type on the distribution of the lesser sendeel, Ammodytes marinus. J. Sea Res. 44, 243-256.
  • 61. Wynn, R.B., Weaver, P.P.E., Ercilla, G., Stow, D.A.V., Masson, D.G., 2000. Sedimentary processes in the Selvage sediment-wave field, NE Atlantic: new insights into the formation of sediment waves by turbidity currents. Sedimentology 47, 1181-1197.
  • 62. Wynn, R.B., Stow, D.A.V., 2002. Classification and characterization of deep-water sediment waves. Mar. Geol. 192, 7-22.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c2f620f-a055-4d0c-90a3-6519048780ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.