PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Model predictive direct power control of energy storage quasi-Z-source grid-connected inverter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to overcome the shortcoming of large switching losses caused by variable switching frequency appears in the conventional finite control set model predictive control (FCS-MPC) algorithm, a model predictive direct power control (MP-DPC) for an energy storage quasi-Z-source inverter (ES-qZSI) is proposed. Firstly, the power prediction model of the ES-qZSI is established based on the instantaneous power theory. Then the average voltage vector in the 𝛼𝛽 coordinate system is optimized by the power cost function. Finally, the average voltage vector is used as the modulation signal, and the corresponding switching signal with fixed frequency is generated by the shoot-through segment space vector pulse width modulation (SVPWM) technology. The simulation results show that the ES-qZSI realizes six shoot-through actions per control cycle and achieves the constant frequency control of the system, which verifies the correctness of the proposed control strategy.
Rocznik
Strony
21--35
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University China
  • College of Electrical Engineering, Lanzhou Institute of Technology China
autor
  • School of Automation and Electrical Engineering, Lanzhou Jiaotong University China
  • College of Electrical and Information Engineering, Lanzhou University of Technology China
  • Gansu Province Special Equipment Inspection and Testing Institute China
autor
  • Jingtaichuan Electric Power Pumping Irrigation Water Resources Utilization Center of Gansu Province China
Bibliografia
  • [1] Ding M., Wang W.S., Wang X.L., Song Y.T., Chen D.Z., Sun M., A Review on the Effect of Largescale PV Generation on Power Systems, Proceedings of the CSEE, vol. 34, no. 1, pp. 1–14 (2014), DOI: 10.13334/j.0258-8013.pcsee.2014.01.001.
  • [2] Li Y., Fang F., Xiao X.Y., Zhang R., Li J.Y., Qi W.B., Grid-connected photovoltaic control strategy based on input-output linearization for quasi-Z-source inverter, High Voltage Engineering, vol. 45, no. 7, pp. 2167–2176 (2019), DOI: 10.13336/j.10036520.hve.20190628010.
  • [3] Du Q., Gao F.Y., Qiao Y., Quasi-PR Control Strategy for Quasi-Z Source PV Grid-connected Inverter Based on Power Feed-forward, High Voltage Engineering, vol. 43, no. 10, pp. 3322–3329 (2017), DOI: 10.13336/j.1003-6520.hve.20170828001.
  • [4] Li Y., Peng F.Z., Constant Capacitor Voltage Control Strategy for Z-Source/Quasi-Z-Source Inverter in Grid-Connected Photovoltaic Systems, Transactions of China Electrotechnical Society, vol. 26, no. 5, pp. 62–69 (2011), DOI: 10.19595/j.cnki.1000-6753.tces.2011.05.010.
  • [5] Zhang B.G., Hong D.Y., Wang T.P., Zhen Z., Wang D.H., A novel two-phase interleaved parallel bidirectional DC/DC converter, Archives of Electrical Engineering, vol. 70, no. 1, pp. 219–231 (2021), DOI: 10.24425/aee.2021.136063.
  • [6] Qiu P.C., Ge B.M., Bi D.Q., Battery energy storage-based power stabilizing control for grid-connected photovoltaic power generation system, Power System Protection and Control, vol. 39, no. 3, pp. 29–33 (2011), DOI: 10.19595/j.cnki.1000-6753.tces.2011.05.010.
  • [7] Kroics K., Zakis J., Suzdalenko A., Husev O., Khandakji K., Operation possibility of grid-connected Quasi-Z-source Inverter with energy storage and renewable energy generation in wide power range, Proceedings of 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering, Kiev, Ukraine, pp. 564–569 (2017), DOI: 10.1109/UKRCO N.2017.8100303.
  • [8] Li J.L., Ma H.M., Hui D., Present Development Condition and Trends of Energy Storage Technology in the Integration of Distributed Renewable Energy, Transactions of China Electrotechnical Society, vol. 31, no. 14, pp. 1–10+20 (2016), DOI: 10.19595/j.cnki.1000-6753.tces.2016.14.001.
  • [9] Liu C., Zhuo J.K., Zhao D.M., Li S.Q., Chen J.S., Wang J.X., Yao Q., A Review on the Utilization of Energy Storage System for the Flexible and Safe Operation of Renewable Energy Microgrids, Proceedings of the CSEE, vol. 40, no. 1, pp. 1–18+369 (2020), DOI: 10.13334/j.0258-8013.pcsee.190212.
  • [10] Han X.J., Liang Y.B., Wang M.Y., Li B., Dual-regulating feedback optimization control method of PV combined energy storage system based on KF-MPC, Acta Energiae Solaris Sinica, vol. 42, no. 1, pp. 56–62 (2021), DOI: 10.19912/j.0254-0096.tynxb.2018-0856.
  • [11] Wang J.H., Li H.D., A new direct power control strategy of three phase boost type PWM rectifiers, Proceedings of the CSEE, no. 16, pp. 47–52 (2005), DOI: 10.3321/j.issn:0258-8013.2005.16.009.
  • [12] Ma J.P., Song W.S., Feng X.Y., Direct Power Control of Single-phase Three-level Rectifiers Without Phase Locked Loop, Proceedings of the CSEE, vol. 35, no. 7, pp. 1723–1731 (2015), DOI: 10.13334/j.0258-8013.pcsee.2015.07.021.
  • [13] Zakaria El Z.L., Hocine B., Khalil N., Dual Virtual Flux-based Direct Power Control for rectifier under harmonically distorted voltage condition, Archives of Electrical Engineering, vol. 69, no. 4, pp. 951–966 (2020), DOI: 10.24425/aee.2020.134641.
  • [14] Jiang Y.S., Yu Y., Zhao H.M., Direct Power Control of Three Phase PWM Rectifier Using Model Predictive Control, Electric Drive, vol. 45, no. 7, pp. 21–25 (2015), DOI: 10.19457/j.1001-2095.2015.07.005.
  • [15] Yang X.W., Jiang J.G., Predictive Direct Power Control for Three-phase Voltage Source PWM Rectifiers, Proceedings of the CSEE, vol. 31, no. 3, pp. 34–39 (2011), DOI: 10.13334/j.0258-8013.pcsee.2011.03.005.
  • [16] Ye H.Z., Jiang Y., Huang S.D., Xiao L., Liao W., Deadbeat Predictive Direct Power Control for Three-Phase Voltage Source PWM Rectifiers, Transactions of China Electrotechnical Society, vol. 30, no. 4, pp. 121–128 (2015), DOI: 10.19595/j.cnki.1000-6753.tces.2015.04.015.
  • [17] Luo D.R., Ji X.H., Huang S., Liao W., Model Predictive Direct Power Control for Three-Phase Voltage Source PWM Rectifiers, Power System Technology, vol. 38, no. 11, pp. 3109–3114 (2014), DOI: 10.13335/j.1000-3673.pst.2014.11.025.
  • [18] Zhao F.P., Yang Y., Ruan Y., Zhao C.J., Comparative Study for Direct Power Control and Direct Power Predictive Control in Three-Phase Grid-Connected Inverters, Transactions of China Electrotechnical Society, vol. 27, no. 7, pp. 212–220 (2012), DOI: 10.19595/j.cnki.1000-6753.tces.2012.07.028.
  • [19] Ma J.P., Song W.S., Feng X.Y., A Model Predictive Direct Power Control of Single-phase Three-level PWM Rectifiers, Proceedings of the CSEE, vol. 36, no. 4, pp. 1098–1105 (2016), DOI: 10.13334/j.0258-8013.pcsee.2016.04.024.
  • [20] Kulikowski K., Modified algorithms of direct power control of AC/DC converter co-operating with the grid, Archives of Electrical Engineering, vol. 61, no. 3, pp. 373–388 (2012), DOI: 10.2478/v10171-012-0030-2.
  • [21] Bouafia A., Gaubert J.P., Krim F., Predictive Direct Power Control of Three-Phase Pulse width Modulation (PWM) Rectifier Using Space-Vector Modulation (SVM), IEEE Transactions on Power Electronics, vol. 25, no. 1, pp. 228–236 (2010), DOI: 10.1109/TPEL.2009.2028731.
  • [22] Fang F., Li Y., Xiao X.Y., Qi W.B., You Y.F., Ding L.Y., A Finite Control Set-model Predictive Control for Energy-stored Quasi-Z-source Inverter, Proceedings of the CSEE, vol. 39, no. 7, pp. 2133–2144 (2019), DOI: 10.13334/j.0258-8013.pcsee.181131.
  • [23] Cheng J., Xiao X.Y., Ma J.P., Yang X.Y., You Y.F., Cao Z.H., Finite Switching Sequence Model Predictive Direct Power Control of a Three-phase Energy-stored Quasi-Z-source Grid-connected Inverter, Power System Technology, vol. 44, no. 5, pp. 1647–1655 (2020), DOI: 10.13335/j.1000-3673.pst.2019.2150.
  • [24] Liu Y., Ge B., Abu-Rub H., Peng F.Z., Overview of space vector modulations for threephase Z-source/quasi-Z-source inverters, IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 2098–2108 (2014), DOI: 10.1109/TPEL.2013.2269539.
  • [25] Sun D.S., Ge B.M., Bi D.Q., Peng F.Z., Analysis and control of quasi-Z source inverter with battery for grid-connected PV system, International Journal of Electrical Power and Energy Systems, vol. 46, pp. 234–240 (2013), DOI: 10.1016/j.ijepes.2012.10.008.
  • [26] Dong S., Zhang Q.F., Cheng S.K., Inductor current ripple comparison between ZSVM4 and ZSVM2 for Z-source inverters, IEEE Transactions on Power Electronics, vol. 31, no. 11, pp. 7592–7597 (2016), DOI: 10.1109/TPEL.2015.2475614
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c2e2744-678a-43c2-8214-82bf30082cfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.