PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the Influence of Tool Coatings on the Machinability of the Ti6Al4V Alloy Using Gray Relational Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a study of the turning of titanium alloy Ti6Al4V with uncoated and physically or chemically coated carbide blades. The indicators studied and measured were 3D surface roughness, cutting force, the shape of the resulting chips and the degree of blade wear. It was found that coating the cutting blades increased the cutting forces. More blade wear mechanisms also occur, including thermal and adhesive wear. The chemically applied coating makes it possible to obtain the best roughness of Sq and Sz. The coating of the cutting blades had no effect on the form of the chips produced. The Grey Relational Analysis (GRA) confirmed that the recommended blades for the machining of superalloys warranted better technological results for the machining Ti6Al4V alloy.
Twórcy
  • Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, ul. Łukasiewicza 5, Wrocław, Poland
  • Department of Machine Tools and Mechanical Technologies, Wroclaw University of Science and Technology, ul. Łukasiewicza 5, Wrocław, Poland
Bibliografia
  • 1. Abbas A.T., Sharma N., Anwar S., Luqman M., Tomaz I., Hegab H. Multiresponse optimization in high-speed machining of Ti6Al4V using TOPSIS-fuzzy integrated approach. Materials. 2020, 13(5), 1104. https://doi.org/10.3390/ma13051104.
  • 2. Li G., Chandra S., Rahman Rashid R.A., Palanisamy S., Ding S. Machinability of additively manufactured titanium alloys: A comprehensive review. Journal of Manufacturing Processes. 2022, 75, 72–99. https://doi.org/10.1016/j.jmapro.2022.01.007.
  • 3. Xu J., Ji M., Chen M., El Mansori M. Experimental investigation on drilling machinability and hole quality of CFRP/Ti6Al4V stacks under different cooling conditions. International Journal of Advanced Manufacturing Technology. 2020, 109(5–6), 1527–1539, https://doi.org/10.1007/s00170-020-05742-8.
  • 4. Mierzejewska Ż., Kuptel P., Sidun J. Analysis of the surface condition of removed bone implants. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016, 18(1), 65–72, http://dx.doi.org/10.17531/ein.2016.1.9.
  • 5. Deiab I., Waqar S., Pervaiz S. Analysis of Lubrication Strategies for Sustainable Machining during Turning of Titanium Ti6Al4V alloy. Procedia CIRP. 2014, 17, 766–71. https://doi.org/10.1016/j.procir.2014.01.112.
  • 6. Pimenov D.P., Mia M., Gupta M.K., Machado A.R., Tomaz I.V., Sarikaya M., Wojciechowski S., Mikołajczyk T., Kapłonek W. Improvement of machinability of Ti and its alloys using cooling lubrication techniques: a review and future prospect. Journal of Materials Research and Technology. 2021, 11, 719–753. https://doi.org/10.1016/j.jmrt.2021.01.031.
  • 7. Leksycki K., Kacznarek-Pawelska A., Ochał K., Gradzik A., Pimenov D.P., Giasin K., Chuchala D., Wojciechowski Sz. Corrosion resistance and surface bioactivity of ti6al4v alloy after finish turning under ecological cutting conditions. Materials. 2021, 14(22). https://doi.org/10.3390/ma14226917.
  • 8. Rahman M., Wong Y.S., Zareena A.R. Machinability of titanium alloys. JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing. 2003, 46, 107–115.
  • 9. Kassim S., Al-Rubaie, Melotti S., Rabelo A., Paiva J.M., Elbestawi M.A., Veldhuis A.C. Machinability of SLM-produced Ti6Al4V titanium alloy parts. Journal of Manufacturing Processes. 2020, 57, 768–786. https://doi.org/10.1016/j.jmapro.2020.07.035.
  • 10. Karolczak P. Obróbka materiałów trudnoobrabialnych, Nowoczesne procesy obróbki skrawaniem, WNT, Warszawa 2022 (in Polish).
  • 11. Ezugwu E., Bonney J., Yamane Y. An overview of the machinability of aeroengine alloys. J Mater Process Technol. 2003, 134, 233–253. https://doi.org/10.1016/S0924-0136(02)01042-7.
  • 12. Nithin T.M., Vijayaraghavan L. Drilling of titanium aluminide at different aspect ratio under dry and wet conditions. Journal of Manufacturing Processes. 2016, 24(1), 256–269. https://doi.org/10.1016/j.jmapro.2016.09.009.
  • 13. Lindvall R., Lenrick F., M’Saoubi R., Ståhl J.E., Bushlya V. Performance and wear mechanisms of uncoated cemented carbide cutting tools in Ti6Al4V machining. Wear, 2021, 477, 203824. https://doi.org/10.1016/j.wear.2021.203824.
  • 14. Mia M., Dhar N.R. Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti6Al4V superalloy. J Mater Process Technol. 2018, 252, 688–696. https://doi.org/10.1016/j.jmatprotec.2017.10.040.
  • 15. Karolczak P., Kowalski M., Raszka K. The effect of the use of cutting zone minimum quantity lubrication and wiper geometry inserts on titanium Ti6Al4V surface quality after turning. Tribology in Industry, 2021, 43(2), 321–333. https://doi.org/10.24874/ti.1077.03.21.05.
  • 16. Szczotkarz N., Adamczuk K., Dębowski D., Gupta M.K. Influence of aluminium oxide nanoparticles mass concentrations on the tool wear values during turning of titanium alloy under minimum quantity lubrication conditions. Advances in Science and Technology Research Journal. 2024, 18(1), 76–88. https://doi.org/10.12913/22998624/175917.
  • 17. Khatri A., Jahan M.P. Investigating tool wear mechanisms in machining of Ti6Al4V in flood coolant, dry and MQL conditions. Procedia Manufacturing. 2018, 26, 434–445.
  • 18. Sun J., Wong Y.S., Rahman M., Wang Z.G., Neo K.S., Tan C.H., Onozuka H. Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Mach Sci Technol. 2007, 10, 355–370. https://doi.org/10.1080/10910340600902181.
  • 19. Lisowicz J., Habrat W., Krupa K. Influence of minimum quantity lubrication using vegetable-based cutting fluids on surface topography and cutting forces in finish turning of Ti6Al4V. Advances in Science and Technology Research Journal. 2022, 16(1), 95–103. https://doi.org/10.12913/22998624/143289.
  • 20. Yuan S.M., Yan L.T., Liu W.D., Liu Q. Effects of cooling air temperature on cryogenic machining of Ti6Al4V alloy. J Mater Process Technol. 2011, 211(3), 356–62.
  • 21. Sorgato M., Bertolini R., Ghiotti A., Bruschi S. Tool wear analysis in high-frequency vibration-assisted drilling of additive manufactured Ti6Al4V alloy. Wear. 2021, 477, 1–12. https://doi.org/10.1016/j.wear.2021.203814.
  • 22. Chen N., Li Z.J., Wu Y., Zhao G.L., Li L., He N. Investigating the ablation depth and surface roughness of laser-induced nano-ablation of CVD diamond material. Precis Eng. 2019, 57, 220–8. https://doi.org/10.1016/j.precisioneng.2019.04.009.
  • 23. Su Y.S., Li L., Wang G., Zhong X.Q. Cutting mechanism and performance of high-speed machining of a titanium alloy using a super-hard textured tool. J Manuf Process. 2018, 34, 706–12. https://doi.org/10.1016/j.jmapro.2018.07.004.
  • 24. Su Y.S., Li Z., Li L., Wang J.B., Gao H., Wang G. Cutting performance of micro-textured polycrystalline diamond tool in dry cutting. J Manuf Process. 2017, 27, 1–7. https://doi.org/10.1016/j.jmapro.2017.03.013.
  • 25. Liu X., Liu Y., Li L., Tian Y. Performances of micro-textured WC-10Ni3Al cemented carbides cutting tool in turning of Ti6Al4V. International Journal of Refractory Metals and Hard Materials. 2019, 84, 104987. https://doi.org/10.1016/j.ijrmhm.2019.104987.
  • 26. da Silva L.R., da Silva O.S., dos Santos F.V., Duarte F.J., Veloso G.V. Wear mechanisms of cutting tools in high-speed turning of Ti6Al4V alloy. International Journal of Advanced Manufacturing Technology. 2019, 103, 37–48. https://doi.org/10.1007/s00170-019-03519-2.
  • 27. Tan D.W., Guo W.M, Wang H.J., Lin H.T., Wang C.J. Cutting performance and wear mechanism of TiB2-B4C ceramic cutting tools in high speed turning of Ti6Al4V alloy. Ceramics International. 2018, 44(13), 15495–15502. https://doi.org/10.1016/j.ceramint.2018.05.209.
  • 28. Su Y., Li L., Wang G. Machinability performance and mechanism in milling of additive manufactured Ti6Al4V with polycrystalline diamond tool. Journal of Manufacturing Processes. 2022, 75, 1153–1161. https://doi.org/10.1016/j.jmapro.2022.01.065.
  • 29. Sui X., Li G., Qin X., Yu H., Zhou X., Wang K., Wang Q. Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/ TiAlSiN composite coated tool. Ceramics International. 2016, 42, 7524–7532, https://doi.org/10.1016/j.ceramint.2016.01.159.
  • 30. Çaliskan H., Kurbanoǧlu C., Panjan P., Cekada M., Kramar D. Wear behavior and cutting performance of nanostructured hard coatings on cemented carbide cutting tools in hard milling. Tribology International. 2013, 62, 215–222, https://doi.org/10.1016/j.triboint.2013.02.035.
  • 31. Ozel T., Sima M., Srivastava A.K., Kaftanoglu B. Investigations on the effects of multi-layered coated inserts in machining Ti6Al4V alloy with experiments and finite element simulations. CIRP Ann. - Manuf. Technol. 2010, 59, 77–82, https:// doi.org/10.1016/j.cirp.2010.03.055.
  • 32. Chang Y.Y., Lai H.M. Wear behavior and cutting performance of CrAlSiN and TiAlSiN hard coatings on cemented carbide cutting tools for Ti alloys. Surface and Coatings Technology. 2014, 259, 152–158. https://doi.org/10.1016/j.surfcoat.2014.02.015.
  • 33. Michailidis N. Variations in the cutting performance of PVD-coated tools in milling Ti6Al4V, explained through temperature-dependent coating properties. Surface and Coatings Technology. 2016, 304, 325–329. https://doi.org/10.1016/j.surfcoat.2016.07.022.
  • 34. Tatar K., Sjöberg S., Andersson N. Investigation of cutting conditions on tool life in shoulder milling of Ti6Al4V using PVD coated micro-grain carbide insert based on design of experiments. Heliyon. 2020, 6(6), 04217. https://doi.org/10.1016/j.heliyon.2020.e04217.
  • 35. Ni C., Wang X., Zhu L., Liu D., Wang Y., Zheng Z., Zhang P. Machining performance and wear mechanism of PVD TiAlN/AlCrN coated carbide tool in precision machining of selective laser melted Ti6Al4V alloys under dry and MQL conditions. Journal of Manufacturing Processes. 2022, 79, 975–989. https://doi.org/10.1016/j.jmapro.2022.05.036
  • 36. Cavaleiro D., Figueiredo D., Moura C.W., Cavaleiro A., Carvalho S. Machining performance of TiSiN (Ag) coated tools during dry turning of TiAl6V4 aerospace alloy. Ceramics International, 2021, 47, 11799–11806, https://doi.org/10.1016/j.ceramint.2021.01.021.
  • 37. Sateesh Kumar Ch., Urbikain G., De Lucio P.F., López De Lacalle L.N., Pérez-Salinas C., Gangopadhyay S., Fernandes F. Investigating the self-lubricating properties of novel TiSiVN coating during dry turning of Ti6Al4V alloy. Wear, 2023, 532–533, 205095. https://doi.org/10.1016/j.wear.2023.205095.
  • 38. Ghalme S.G., Karolczak P. Multi-response optimization of drilling parameters for aluminum metal matrix composite using entropy weighted grey relational analysis. Advanced Materials Research. 2023, 1177, 17–29. https://doi.org/10.4028/p-x06fxz.
  • 39. Piórkowski P., Borkowski W., Bartoszuk M., Miko E., Skoczyński W. Investigation of Cutting Tool Wear in the Milling Process of the Inconel 718 Alloy. Advances in Science and Technology Research Journal. 2024, 18(2), 26–35. https://doi.org/10.12913/22998624/182944.
  • 40. Khan M.A., Jaffery S.H.I., Khan M., Younas M., Butt S.I., Ahmad R., Warsi S.S. Multi-objective optimization of turning titanium-based alloy Ti6Al4V under dry, wet, and cryogenic conditions using gray relational analysis (GRA). The International Journal of Advanced Manufacturing Technology. 2020, 106, 3897–3911. https://doi.org/10.1007/s00170-019-04913-6
  • 41. Rahman A.M., Rob S.A., Srivastava A.K. Modeling and optimization of process parameters in face milling of Ti6Al4V alloy using Taguchi and grey relational analysis. Procedia Manufacturing. 2021, 53, 204–212. https://doi.org/10.1016/j.promfg.2021.06.023.
  • 42. Karumuri S., Chittaranjan Das V., Mallarapu G.K. Tribological Properties of Al 7075 Composite Reinforced with ZrB2 Using Grey Relational Analysis. Advances in Science and Technology Research Journal. 2022, 16(4), 22–28. https://doi.org/10.12913/22998624/152020.
  • 43. Blicharski M. Inżynieria materiałowa. wydanie 4. Warszawa, Wydawnictwo Naukowe PWN, 2017 (in Polish).
  • 44. Oczoś K., Kawalec A. Kształtowanie metali lekkich. Warszawa, Wydawnictwo WNT, 2012 (in Polish).
  • 45. Çelik Y.H., Kilickap E., Güney M. Investigation of cutting parameters affecting on tool wear and surface roughness in dry turning of Ti6Al4V using CVD and PVD coated tools, Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017, 39(6), 2085–2093. https://doi.org/10.1007/s40430-016-0607-6.
  • 46. Ramana M.V., Rao G.K.M., Rao D.H. Optimization and investigation into the effect of cutting conditions on surface roughness in turning of Ti6Al4V alloy under different machining environments. Journal for manufacturing science and production. 2015, 15(2), 197–204. https://doi.org/10.1515/jmsp-2014-0019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c2ab3b7-a6d0-41b5-9cee-02feed9a4f65
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.