PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Symulacje numeryczne procesu desorpcji i dyfuzji leku w materiale z nanowłókien

Autorzy
Identyfikatory
Warianty tytułu
EN
Numerical modeling of desorption-diffusion process of drug release system based on nanofibrous matrix
Języki publikacji
PL
Abstrakty
PL
W pracy przedstawiono symulacje metodą elementów skończonych procesu desorpcji leku z powierzchni nanowłókien oraz dyfuzji wewnątrz porowatego materiału w zależności od wzajemnej konfiguracji włókien. Zbadano uwalnianie leku w różnych typach ułożenia włókien w materiale od idealnie ukierunkowanych po włókna ułożone nieregularnie. Dodatkowo przeanalizowano wpływ lokalnego zagęszczenia włókien i porowatości materiału na proces dyfuzji w macie. Przedstawiony model porównano z wynikiem eksperymentalnym uwalniania Rodaminy B z elektroprzędzonych nanowłókien oraz rozwiązaniem analitycznym dyfuzji z płaskiej płyty z homogenicznie rozmieszczonym lekiem. Celem przeprowadzonych obliczeń jest znalezienie kluczowych parametrów materiału, stosowanego jako system uwalniania leków w zapobieganiu neurodegeneracji po operacjach neurochirurgicznych.
EN
In the paper the finite element simulations of desorption of drug from the surface of the nanofibers and diffusion inside the porous material, depending on the configuration of the fibers are presented. Drug release was examined in various types of the fibers arrangement from perfectly oriented to irregularly arranged. In addition, the impact of the local compaction of fibers and porosity of mats on the process of diffusion in the material was analyzed. The presented model was compared with the experimental result of the release of Rhodamine B from electrospun nanofibers and with the analytical solution of diffusion from a flat plate with a homogeneously distributed drug. The aim of the work is to find the key parameters of the material, used as a drug delivery system for the prevention of neurodegeneration after neurosurgical procedures.
Słowa kluczowe
Rocznik
Strony
99--111
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
autor
  • Zakład Mechaniki i Fizyki Płynów, Instytut Podstawowych Problemów Techniki PAN
Bibliografia
  • 1. Sell S., McClure M.J., Garg K., Wolfe P.S., Bowlin G.L.: Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. “Advanced drug delivery reviews” 2009, Vol. 61, p. 1007 – 1019.
  • 2. Yoo H.S., Kim T.G., Park T.G.: Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. “Advanced drug delivery reviews” 2009, Vol. 61 p. 1033 – 1042.
  • 3. Srouji S., Ben-David D., Lotan R., Livne E., Avrahami R., Zussman E.: Protein-2 embedded within electrospun scaffolds for regeneration of bone defect : In vitro and in vivo evaluation. “Tissue Engineering: Part A” 2011, Vol. 17, p. 269 – 277.
  • 4. Meinel A.J.: Cell instructive silk fibroin scaffolds for tissue engineering. PhD Dissertation, University of Wurzburg, 2010.
  • 5. Wang H.B., Mullins M.E., Cregg J.M., Hurtado A., Oudega M., Trombley M.T., Gilbert R.J.: Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. “Journal of Neural Engineering” 2009, Vol. 6, p. 016001.
  • 6. Szentivanyi A., Chakradeo T., Zernetsch H., Glasmacher B.: Electrospun cellular microenvironments: Understanding controlled release and scaffold structure. “Advanced drug delivery reviews” 2011, Vol. 63, p. 209 -220.
  • 7. Lee J.B., Yang D.H.: Highly porous electrospun nanofibers enhanced by ultrasonication for Improved cellular infiltration. “Tissue Engineering: Part A” 2011, Vol. 17, p. 2695 – 2702.
  • 8. Lowery J.L., Datta N., Rutledge G.C.: Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. “Biomaterials” 2010, Vol. 31, p. 491 – 504.
  • 9. Pillay V., Dott C., Choonara Y.E., Tyagi C., Tomar L., Kumar P., du Toit L.C., Ndesendo V.M.K.: A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. “Journal of Nanomaterials” 2013, Vol. 2013, p. 22.
  • 10. Yarin A.L.: Coaxial electrospinning and emulsion electrospinning of core–shell fibers. “Polymers for Advanced Technologies” 2011, Vol. 22, p. 310 – 317.
  • 11. Zhang H., Zhao C., Zhao Y., Tang G., Yuan X.: Electrospinning of ultrafine core/shell fibers for biomedical applications. “Science China Chemistry” 2010, Vol. 53, p. 1246 – 1254.
  • 12. Yarin A.L., Zussman E., Wendorff J., Greiner A.: Material encapsulation and transport in core–shell micro/nanofibers, polymer and carbon nanotubes and micro/nanochannels. “Journal of Material Chemistry” 2007, Vol 17, p. 2585 – 2599.
  • 13. Zhang Y.Z., Wang X., Feng Y., Li J., Lim C.T., Ramakrishna S.: Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. “Biomacromolecules” 2006, Vol. 7, p. 1049 – 1057.
  • 14. Meng Z.X., Xu X.X., Zheng W., Zhou H.M., Li L., Zheng Y.F., Lou X.: Preparation and characterization of electrospun PLGA/gelatin nanofibers as a potential drug delivery system. “Colloids and surfaces. B, Biointerfaces” 2011, Vol. 84, p. 97 – 102.
  • 15. Huang L., Branford-White C., Shen X., Yu D., Zhu L.: Time-engineeringed biphasic drug release by electrospun nanofiber meshes. “International Journal of Pharmaceutics” 2012, Vol. 436, p. 88 – 96.
  • 16. Sirc J., Kubinova S., Hobzova R., Stranska D., Kozlik P., Bosakova Z., Marekova V., Holan V., Sykova E., Michalek J.: Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. “International Journal of Nanomedicine” 2012, Vol. 7, p. 5315 – 5325.
  • 17. Kim G., Yoon H., Park Y.: Drug release from various thicknesses of layered mats consisting of electrospun polycaprolactone and polyethylene oxide micro/nanofibers. “Applied Physics A” 2010, Vol. 100, p. 1197 – 1204.
  • 18. Chen D.W., Hsu Y-H, Liao J-Y, Liu S-J, Chen J-K, Ueng SW-N.: Sustainable release of vancomycin, gentamicin and lidocaine from novel electrospun sandwich-structured PLGA/collagen nanofibrous membranes. “International Journal of Pharmaceutics” 2012, Vol. 430, p. 335 – 341.
  • 19. Nagai Y., Unsworth L.D., Koutsopoulos S., Zhang S.: Slow release of molecules in self-assembling peptide nanofiber scaffold. “Journal of controlled release” 2006, Vol. 115, p. 18 – 25.
  • 20. Cabrera M., Luna J., Grau R.: Modeling of dissolution-diffusion controlled drug release from planar polymeric systems with finite dissolution rate and arbitrary drug loading. “Journal of Membrane Science” 2006, Vol. 280, p. 693 – 704.
  • 21. Zhou Y., Wu X.Y.: Finite element analysis of diffusional drug release from complex matrix systems. I. Complex geometries and composite structures. “Journal of Controlled Release” 1997, Vol. 49, p. 277 – 288.
  • 22. Siepmann J., Siepmann F.: Mathematical modeling of drug dissolution. :International Journal of Pharmaceutics” 2013, Vol. 44, p. 1 – 13.
  • 23. Tzafriri A.R., Lerner E.I., Flashner-Barak M., Hinchcliffe M., Ratner E., Parnas H.: Mathematical modeling and optimization of drug delivery from intratumorally injected microspheres. “Clinical Cancer Research” 2005, Vol. 11, p. 826 – 834.
  • 24. Chen Y., Zhou S., Li Q.: Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems. “Acta Biomaterialia” 2011, Vol. 7, p. 1140 – 1149.
  • 25. Lao L.L., Peppas N., Boey F.Y.C., Venkatraman S.S.: Modeling of drug release from bulk-degrading polymers. “International Journal of Pharmaceutics” 2010, Vol. 418, p. 28 – 41.
  • 26. Kaunisto E., Marucci M., Borgquist P., Axelsson A.: Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems. “International Journal of Pharmaceutics” 2011, Vol. 418, p. 54 – 77.
  • 27. Arifin D.Y., Lee L.Y., Wang C-H.” Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. “Advanced drug delivery reviews” 2006, Vol. 58, p. 1274 – 1325.
  • 28. Tzafriri A.R.: Mathematical modeling of diffusion-mediated release from bulk degrading matrices. “Journal of Controlled Release” 2000, Vol. 63, p. 69 – 79.
  • 29. Kowalewski T.A., Kowalczyk T., Nakielski P., Sulejczak D., Frontczak-Baniewicz M., Andrychowski J. Zastosowanie opatrunków z nanowłókien polimerowych w zapobieganiu pourazowym zmianom w mózgu. Zgłoszenie patentowe 2013.
  • 30. Andrychowski J., Frontczak-Baniewicz M., Sulejczak D., Kowalczyk T., Chmielewski T., Czernicki Z., Kowalewski T.A.: Nanofiber nets in prevention of cicatrisation in spinal procedures: experimental study. “Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre, Polish Academy of Sciences” 2013, Vol. 51, p. 147–157.
  • 31. Kowalczyk T., Nowicka A., Elbaum D., Kowalewski T.A.: Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. “Biomacromolecules” 2008, Vol. 9, p. 2087 - 2090.
  • 32. Stylianopoulos T., Diop-Frimpong B., Munn L.L., Jain R.K.: Diffusion anisotropy in collagen gels and tumors: the effect of fiber network orientation. “Biophysical Journal” 2010, Vol 99, p. 3119 - 3128.
  • 33. Clague D.S., Phillips R.J.: Hindered diffusion of spherical macromolecules through dilute fibrous media. “Physics of Fluids” 1996, Vol. 8, p. 1720.
  • 34. Amsden B.: Solute dffusion within hydrogels: mechanisms and models. “Macromolecules” 1998, Vol. 31, p. 8382–8395.
  • 35. Multiphysics Modeling and Simulation Software, http://www.comsol.com, (odczyt z dn. 14 stycznia 2013)
  • 36. Kalyanasundaram S., Calhoun V., Leong K.: A finite element model for predicting the distribution of drugs delivered intracranially to the brain. “American Journal of Physiology-Regulatory, Integrative and Comparative Physiology” 1997, Vol. 273, p. 1810.
  • 37. Crank J.: The mathematics of diffusion. Oxford: Clarendon Press, 1975.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c274465-6b16-461c-9fce-dd7655041636
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.