PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of ARMA modelling and alpha-stable distribution for local damage detection in bearings

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie modelu ARMA i rozkładu alfa-stabilnego do detekcji uszkodzeń lokalnych w łożyskach
Języki publikacji
EN
Abstrakty
EN
In this paper a novel method for informative frequency band selection is presented. It is suitable for a vibration signal from a damaged rotating machine which is consisted of a pulse train, but it might be contaminated by other vibrations, often with higher energy. We first decompose the signal into simpler sub-signals and analyze those sub-signals using statistical tools, i.e. autoregressive moving average modelling and fitting of the α -stable distribution. The choice of this distribution is motivated by its excellent ability of modeling heavy-tailed data, i.e impulsive data. We illustrate the proposed methodology by analysis of real vibration signals from heavy-duty rotating machinery. The results prove that this statistical analysis is very efficient in informative frequency band selection in presence of high-energy contamination.
PL
W artykule zaprezentowano nową metodę selekcji informacyjnego pasma częstotliwościowego. Jest ona odpowiednia dla sygnałów drganiowych z maszyny uszkodzonej zawierających impulsy, nawet kiedy są one niewidoczne w dziedzinie czasu, tzn. kiedy wysokoenergetyczne drgania innych elementów zakłócają sygnał informacyjny. Pierwszym krokiem zaproponowanej metody jest dekompozycja sygnału na składowe o prostszej strukturze i ich analiza za pomocą narzędzi statystycznych, tj. modelu ARMA i rozkładu alfa-stabilnego. Wybór tego rozkładu jest umotywowany zdolnością modelowania danych ciężko ogonowych, tzn. sygnałów, w których występują impulsy. Metodę zilustrowano analizą rzeczywistych sygnałów z drganiowych maszyn górniczych. Potwierdzono efektywność zaproponowanej metody statystycznej w kontekście selekcji informacyjnego pasma częstotliwościowego w obecności wysokoenergetycznych zakłóceń.
Czasopismo
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
autor
  • Diagnostics and Vibro-Acoustics Science Laboratory, Wroclaw University of Technology, Na Grobli 15, 50-421 Wroclaw, Poland
  • Diagnostics and Vibro-Acoustics Science Laboratory, Wroclaw University of Technology, Na Grobli 15, 50-421 Wroclaw, Poland
  • Hugo Steinhaus Center, Institute of Mathematics and Computer Science, Wroclaw University of Technology, Janiszewskiego 14a, 50-370 Wroclaw, Poland
autor
  • Diagnostics and Vibro-Acoustics Science Laboratory, Wroclaw University of Technology, Na Grobli 15, 50-421 Wroclaw, Poland
Bibliografia
  • [1] Zimroz R.: Role of signal preprocessing in local damage detection in mining machines. Diagnostyka, 2008, Vol. 2, No. 46, pp. 33-36.
  • [2] Barszcz T., Jabłoński A.: A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mechanical Systems and Signal Processing, 2011, Vol. 25, No. 1, pp. 431-451.
  • [3] Obuchowski J., Wyłomańska A., Zimroz, R.: Selection of informative frequency band in local damage detection in rotating machinery. Mechanical Systems and Signal Processing, 2014, Vol. 48, No. 1-2, pp. 138-152.
  • [4] Obuchowski J., Wyłomańska A., Zimroz, R.: The local maxima method for enhancement of time-frequency map and its application to local damage detection in rotating machines. Mechanical Systems and Signal Processing, 2014, Vol. 46, No. 2, pp. 389-405.
  • [5] Braun S.: The synchronous (time domain) average revisited. Mechanical Systems and Signal Processing, 2011, Vol. 25, No. 4, pp. 1087-1102.
  • [6] Randall R.B., Antoni J.: Rolling element bearing diagnostics - A tutorial. Mechanical Systems and Signal Processing, 2011, Vol. 25, No. 2, pp. 485-520.
  • [7] Urbanek J., Barszcz T., Antoni J.: Time-frequency approach to extraction of selected second-order cyclostationary vibration components for varying operational conditions. Measurement, 2013, Vol. 46, No. 4, pp. 1454-1463.
  • [8] Antoni J.: Cyclostationarity by examples. Mechanical Systems and Signal Processing, 2009, Vol. 23, No. 4, pp. 987-1036.
  • [9] Raad A., Antoni J., Sidahmed M.: Indicators of cyclostationarity: Theory and application to gear fault monitoring. Mechanical Systems and Signal Processing, 2008, Vol. 22, No. 3, pp. 574-587.
  • [10] Urbanek J., Antoni J., Barszcz T.: Detection of signal component modulations using modulation intensity distribution. Mechanical Systems and Signal Processing, 2012, Vol. 28, pp. 399-413.
  • [11] Antoni J., Randall R.B.: The spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 2006, Vol. 20, No. 2, pp. 308-331.
  • [12] Antoni J.: Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 2007, Vol. 21, No. 1, pp. 108-124.
  • [13] Lin J., Zuo M.J.: Gearbox fault diagnosis using adaptive wavelet filter. Mechanical Systems and Signal Processing, 2003, Vol. 17, No. 6, pp. 1259-1269.
  • [14] Tse P.W., Wang D.: The sparsogram: A new and effective method for extracting bearing fault features. Prognostics and System Health Management Conference, PHM-Shenzhen, 2011, art. no. 5939587.
  • [15] Tse P.W., Wang D.: The design of a new sparsogram for fast bearing fault diagnosis: Part 1 of the two related manuscripts that have a joint title as "two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2. Mechanical Systems and Signal Processing, 2013, Vol. 40, No. 2, pp. 499-519.
  • [16] Tse P.W., Wang D.: The automatic selection of an optimal wavelet filter and its enhancement by the new sparsogram for bearing fault detection: Part 2 of the two related manuscripts that have a joint title as "two automatic vibration-based fault diagnostic methods using the novel sparsity measurement - Parts 1 and 2. Mechanical Systems and Signal Processing, 2013, Vol. 40, No. 2, pp. 520-544.
  • [17] Obuchowski J., Wyłomańska A., Zimroz R.. Stochastic modeling of time series with application to local damage detection in rotating machinery. Key Engineering Materials, 2013, Vol. 569, pp. 441-449.
  • [18] Makowski R., Zimroz R.: Parametric timefrequency map and its processing for local damage detection in rotating machinery. Key Engineering Materials, 2014, Vol. 588, pp. 214-222.
  • [19] Barszcz T. Sawalhi N.: Wind turbines' rolling element bearings fault detection enhancement using minimum entropy deconvolution. Diagnostyka, 2011, Vol. 3, No. 59, pp. 53-59.
  • [20] Barszcz T. Jabłoński A.: Selected methods of finding optimal center frequency for amplitude demodulation of vibration signals. Diagnostyka, 2010, Vol. 2, No. 54, pp. 25-28.
  • [21] Barszcz T., Urbanek J., Szumilas Ł.: Selected methods of finding optimal center frequency for amplitude demodulation of vibration signals. Diagnostyka, 2010, Vol. 4, No. 56, pp. 55-58.
  • [22] Allen J.B.: Short term spectral analysis, synthesis, and modification by discrete Fourier transform. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1977, Vol. 25, No. 3, pp. 235-238.
  • [23] Brockwell P.J., Davis R.A.: Time Series Theory and Methods - 2nd Edition. Springer, New York, 2006.
  • [24] Wyłomańska A.: How to Identify the Proper Model. Acta Physica Polonica B, 2012, Vol. 43, No. 5, pp. 1241-1253.
  • [25] Yu G., Li C., Zhang J.: A new statistical modeling and detection method for rolling element bearing faults based on alpha-stable distribution. Mechanical Systems and Signal Processing, 2013, Vol. 41, No. 1-2, pp. 155-175.
  • [26] Samorodnitsky G., Taqqu M. S.: Stable Non-Gaussian Random Processes. Chapman and Hall, New York, 1994.
  • [27] McCulloch J. H.: Simple consistent estimators of stable distribution parameters. Communications in Statistics, Simulation and Computation, 1986, Vol.15, pp. 1109-1136.
  • [28] Burnecki K., Wyłomańska A., Aleksei B., Vsevolod G., Aleksei C.: Recognition of stable distribution with Levy index alpha close to 2. Physical Review E, 2012, Vol. 85, 056711.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c250043-93d8-4368-962d-3ad813d69214
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.