Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Energy dissipator functions to dissipate the river-flow energy to avoid longitudinal damage to the downstream river morphology. An optimal energy dissipator planning is essential to fulfilling safe specifications regarding flow behavior. This study aims to determine the variation of energy dissipators and evaluate its effect on the hydraulic jump and energy dissipation. For this purpose, a physical model was carried out on the existing weir condition (two steps). It was also carried out on four stepped-weir variations, i.e., three-step, three-step with additional baffle blocks at the end sills, four-step, and six-step. Dimensional analysis was employed to correlate the different parameters that affect the studied phenomenon. The study shows a three-step jump shows a significantly higher Lj/y1 ratio, which is an advantage to hydraulic jumps’ compaction. The comparison of energy dissipation in all weir variations shows that the three-stepped weir has wasted more energy than other types. The energy dissipation increase of the three-step type is 20.41% higher than the existing type’s energy dissipation and much higher than other types. The dimensions of the energy dissipation basin are the ratio of the width and height of the stairs (l/h) of the three-step type (2.50). Therefore, this type is more optimal to reduce the cavitation risk, which damages the river structure and downstream area.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
56--61
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
- Syiah Kuala University, Faculty of Engineering, Civil Engineering Department, Jl. Tgk. Syeh Abdul Rauf No. 7, Darussalam – Banda Aceh 23111, Indonesia
autor
- Syiah Kuala University, Faculty of Agriculture, Department of Soil Science, Banda Aceh, Indonesia
autor
- Syiah Kuala University, Faculty of Engineering, Civil Engineering Department, Jl. Tgk. Syeh Abdul Rauf No. 7, Darussalam – Banda Aceh 23111, Indonesia
autor
- Syiah Kuala University, Faculty of Engineering, Civil Engineering Department, Jl. Tgk. Syeh Abdul Rauf No. 7, Darussalam – Banda Aceh 23111, Indonesia
autor
- Syiah Kuala University, Faculty of Engineering, Department of Electrical Engineering, Banda Aceh, Indonesia
autor
- Syiah Kuala University, Faculty of Engineering, Civil Engineering Department, Jl. Tgk. Syeh Abdul Rauf No. 7, Darussalam – Banda Aceh 23111, Indonesia
Bibliografia
- ABBASPOUR A., PARVINI S., DALIR A.H. 2016. Effect of buried plates on scour profilesdownstream of hydraulic jump in open channels with horizontal and reverse bed slopes. Water Science and Engineering. Vol. 9(4) p. 329–335. DOI 10.1016/j.wse.2017.01.003.
- ABDEL AAL G.M., SOBEAH M., HELAL E., EL-FOOLY M. 2018. Improving energy dissipation on stepped spillways using breakers. Ain Shams Engineering Journal. Vol. 9(4) p. 1887–1896. DOI 10.1016/j.asej.2017.01.008.
- ALAM R.R.R., TAUFIQ M. 2018. Kajian hidrolika pelimpah samping pada model fisik Bendungan Pasuruhan Kabupaten Magelang Provinsi Jawa Tengah dengan Skala 1:60 [Study of side spillway hydraulics on physical model of Pasuruan Reservoir, Magelang Regency, Central Java Province with a scale of 1:60]. Art. of MSc Thesis. Water Engineering, Engineering Faculty – Brawijaya University p. 1–9.
- ALTALIB A.N., MOHAMMED A.Y., HAYAWI H.A. 2019. Hydraulic jump and energy dissipation downstream stepped weir. Flow Measurement and Instrumentation. Vol. 69, 101616. DOI 10.1016/j.flowmea-sinst.2019.101616.
- AZMERI A., LEGOWO S., REZKYNA N. 2020. Interphase modeling of soil erosion hazard using a Geographic Information System and the Universal Soil Loss Equation. Journal of Chinese Soil and Water Conservation. Vol. 51(2) p. 65–75. DOI 10.29417/JCSWC.202006_51(2).0003.
- BARANI G.A., RAHNAMA M.B., SOHRABIPOOR N. 2005. Investigation of flowenergy dissipation over different stepped spillways. American Journal of Applied Sciences. Vol. 2(6) p. 1101–1105. DOI 10.3844/ajassp.2005.1101.1105.
- BASRI H., AZMERI A., WESLI W., JEMI F.Z. 2020. Simulation of sediment transport in Krueng Baro River, Indonesia, Jamba. Journal of Disaster Risk Studies. Vol. 12(1), a934 p. 1–9. DOI 10.4102/jamba.v12i1.934.
- BEJESTAN M.S., NEISI K. 2009. A new roughened bed hydraulic jump stilling basin. Asian Journal of Applied Sciences. Vol. 2(5) p. 436– 445. DOI 10.3923/ajaps.2009.436.445.
- CHANSON H. 1994. Comparison of energy dissipation between nappe and skimming flowregimes on stepped chutes. Journal of Hydraulic Reserch. Vol. 32(2) p. 213–218. DOI 10.1080/00221686.1994.10750036.
- CHANSON H. 2009. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results. European Journal of Mechanics B/Fluids. Vol. 28(2) p. 191–210. DOI 10.1016/j.euromechflu.2008.06.004.
- ELNIKHELY E.A. 2018. Investigation and analysis of scour downstream of a spillway, Ain Shams Engineering Journal. Vol. 9 (4) p. 2275–2282. DOI 10.1016/j.asej.2017.03.008.
- HUSAIN D., ALHAMID A.A., NEGM A.A.M. 2010. Length and depth of hydraulic jump in sloping channels. Journal of Hydraulic Research. Vol. 32(6) p. 899–910. DOI 10.1080/00221689409498697.
- KARBASI M. 2016. Estimation of classical hydraulic jump length using teaching–learning based optimization algorithm. Journal of Materials and Environmental Science. Vol. 7(8) p. 2947–2954.
- KIM Y., CHOI G., PARK H., BYEON S. 2015. Hydraulic jump and energy dissipation with sluice gate. Water. Vol. 7 p. 5115–5133. DOI 10.3390/w7095115.
- LI L.X., LIAO H.S., LIU D., JIANG S.Y. 2015. Experimental investigation of the optimization of stilling basin with shallow-water cushion used for low Froude number energy dissipation. Journal of Hydrodinamics. Vol. 27(4) p. 552–529. DOI 10.1016/S1001-6058 (15)60512-1.
- SULISTIONO B., MAKRUP L. 2017. Study of hydraulic jump length coefficient with the leap generation by canal gate model. American Journal of Civil Engineering. Vol. 5(3) p. 148–154. DOI 10.11648/j.ajce.20170503.14.
- TIWARI H.L., GOEL A. 2016. Effect of impact wall on energy dissipation in stilling basin. KSCE Journal of Civil Engineering. DOI 10.1007/s12205-015-0292-5.
- WÜTHRICH D., CHANSON H. 2014. Hydraulics, air entrainment, and energy dissipation on a gabion stepped weir. Journal of Hydraulic Engineering. Vol. 140(9) p. 04014046.1–04014046.10. DOI 10.1061/(ASCE)HY.1943-7900.0000919.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c1588ac-3915-4c48-8504-49559ba3cbdd