PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Epiphytic Lichen Diversity as Indicator of Environmental Quality in an Industrial Area (Central Lithuania)

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to evaluate the impact of nitrogen fertilizer industry pollution on epiphytic lichen communities. The study plots are located in Scots pine Pinus sylvestris stands at different distances (up to 12 km) to the northeast and southwest of the nitrogen fertilizer producer plant in central Lithuania. The stands were semi-mature and mature and growing on sandy sites of the Vaccinio-myrtillosa site type. Species richness, composition and index of atmospheric purity (IAP) were assessed at each site. Species diversity was calculated by grouping species by their ecological values for eutrophication. Species frequency was calculated according to lichen life strategies (growth forms, photobionts, reproductive strategies). Twenty lichens species were recorded in the surrounding of the pollution source. An increase in species richness and diversity was found with increasing the distance up to 10 km from the plant. Based on IAP values three zones (< 5, 5–10, > 10 km) with different air pollution were distinguished. The increase in species richness was related to the increase in eutrophication-tolerating species along with sensitive to pollution species. The lichen diversity value of nitrophytic species (LDVnitro) increased with increasing distance from the pollution source. Foliose and fruticose growth forms were both positively significantly related with the distance, being common in the plots with lower level of pollution. Crustose lichens are less sensitive to this factor and the prevalence of crustose thalli was found in the nearest vicinity to the plant.
Rocznik
Strony
38--45
Opis fizyczny
Bibliogr. 47 poz., tab., wykr.
Twórcy
  • Vytautas Magnus University, Department of Environmental Sciences, Vileikos 8, LT-44404, Kaunas, Lithuania
Bibliografia
  • [1] Armolaitis K., Bartkevicius E., Juknys R., Raguotis A., Sepetienė J. 1999 — Effects of pollutants from JV Achema on forest ecosystems (In: Monitoring of Forest Ecosystems in Lithuania, Ed: R. Ozolincius) — Lutute, Kaunas, pp. 44–64.
  • [2] Asta J., Erhardt W., Ferretti M., Fornasier F., Kirschbaum U., Nimis P. L., Purvis O.W., Pirintsos S., Scheidegger C., van Haluwyn C., Wirth V. 2002 — Mapping lichen diversity as an indicator of environmental quality (In: Monitoring with Lichens — Monitoring Lichens, Eds: P. L. Nimis, C. Scheidegger, P. A. Wolseley) — Nato Science Program, IV. Kluwer Academic Publisher, The Netherlands, pp. 273–279.
  • [3] Bačkor M., Paulíková K., Geralská A., Davidson R. 2003 — Monitoring of air pollution in Košice (eastern Slovakia) using lichens — Pol. J. Environ. Stud. 12: 141–150.
  • [4] Bajpai R., Upreti D. K., Nayaka S., Kumari B. 2010 — Biodiversity, bioaccumulation and physiological changes in lichens growing in the vicinity of coal-based thermal power plant of Raebareli district, north India — J. Hazard. Mater. 174: 429–436.
  • [5] Bates J. W., Bell J. N. B., Massara A. C. 2001 — Loss of Lecanora conizaeoides and other fluctuations of epiphytes on oak in S.E. England over 21 years with declining SO2 concentrations — Atmos. Environ. 35: 2557–2568.
  • [6] Calvelo S., Baccalá N, Liberatore S. 2009 — Lichens as bioindicators of air quality in distant areas in Patagonia (Argentina) — Environ. Bioindic. 4: 123–135.
  • [7] Calvelo S., Liberatore S. 2004 — Applicability of in situ or transplanted lichens for assessment of atmospheric pollution in Patagonia, Argentina — J. Atmos. Chem. 49: 199–210.
  • [8] Conti M. E., Cecchetti G. 2001 — Biological monitoring: lichens as bioindicators of air pollution assessment — a review — Environ. Pollut. 114: 471–492.
  • [9] Das P., Joshi S., Rout J., Upreti D. K. 2013 — Lichen diversity for environmental stress study: Application of index of atmospheric purity (IAP) and mapping around a paper mill in Barak Valley, Assam, northeast India — Trop. Ecol. 54: 355–364.
  • [10] Estrabou C., Filippini E., Soria J. P., ·Schelotto G., Rodriguez J. M. 2011 — Air quality monitoring system using lichens as bioindicators in Central Argentina — Environ. Monit. Assess. 182: 375–383.
  • [11] Evju M., Bruteig I. E. 2013 — Lichen community change over a 15-year time period: effects of climate and pollution — Lichenologist, 45: 35–50.
  • [12] Falla J., Laval-Gilly P., Henryon M., Morlot D., Ferard J. F. 2000 — Biological air quality monitoring: A review — Environ. Monit. Assess. 64: 627–644.
  • [13] Fritz-Sheridan R. 1985 — Impact of simulated acid rains on nitrogenase activity in Peltigera aphthosa and P. polydactyla — Lichenologist, 17: 27–31.
  • [14] Giordani P., Brunialti G., Bacaro G., Nascimbene J. 2012 — Functional traits of epiphytic lichens as potential indicators of environmental conditions in forest ecosystems — Ecol. Indic. 18: 413–420.
  • [15] Giordano S., Sorbo S., Adamo P., Basile A., Spagnuolo V., Cobianchi R. C. 2004 — Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy — Plant Ecol. 170: 1–14.
  • [16] Kiszka J., Grodzińska K. 2004 — Lichen flora and air pollution in the Niepolomice Forest (S Poland) in 1960–2000 — Biologia, 59: 25–37.
  • [17] Koch N. M., Martins S. M. D., Lucheta F., Muller S. C. 2013 — Functional diversity and traits assembly patterns of lichens as indicators of successional stages in a tropical rainforest — Ecol. Indic. 34: 22–30.
  • [18] Košuthová A. D., Šibík J. 2013 — Ecological indicator values and life history traits of terricolous lichens of the Western Carpathians — Ecol. Indic. 34: 246–259.
  • [19] Kupcinskiene E., Huttunen S. 2005 — Long-term evaluation of the needle surface wax condition of Pinus sylvestris around different industries in Lithuania — Environ. Pollut. 137: 610–618.
  • [20] Lackovičová A., Guttová A., Bačkor M., Pišút P., Pišút I. 2013 — Response of Evernia prunastri to urban environmental conditions in Central Europe after the decrease of air pollution — Lichenologist, 45: 89–100.
  • [21] Larsen R. S., Bell J. N. B., James P. W., Chimonides P. J., Rumsey F. J., Tremper A., Purvis O. W. 2007 — Lichen and bryophyte distribution on oak in London in relation to air pollution and bark acidity — Environ. Pollut. 146: 332–340.
  • [22] Li S., Liu W. Y., Li D. W. 2013 — Bole epiphytic lichens as potential indicators of environmental change in subtropical forest ecosystems in southwest China — Ecol. Indic. 29: 93–104.
  • [23] Liska J., Herben T. 2008 — Long-term changes of epiphytic lichen species composition over landscape gradients: an 18 year time series — Lichenologist, 40: 437–448.
  • [24] Lisowska M. 2011 — Lichen recolonisation in an urban-industrial area of southern Poland as a result of air quality improvement — Environ. Monit. Assess. 179: 177–190.
  • [25] Llop E., Pinho P., Matos P., Pereira M. J., Branquinho C. 2012 — The use of lichen functional groups as indicators of air quality in a Mediterranean urban environment — Ecol. Indic. 13: 215–221.
  • [26] Loppi S. 1996 — Lichens as bioindicators of geothermal air pollution in central Italy — Bryologist, 99: 41–48.
  • [27] Loppi S., Francalanci C., Pancini P., Marchi G., Caporali B. 1996 — Lichens as bioindicators of air quality in Arezzo (central Italy) — Ecol. Mediterr. 22: 11–16.
  • [28] Loppi S., Giordani P., Brunialti G., Isocrono D., Piervittori R. 2002 — A new scale for the interpretation of lichen biodiversity values in the Tyrrhenian side of Italy — Bibl. Lichenol. 82: 237–243.
  • [29] Loppi S., Glovannew L., Pirintsos S. A., Putortì E., Corsini A. 1997 — Lichens as bioindicators of recent changes in air quality (Montecatini Terme, Italy) — Ecol. Mediterr. 23: 53–56.
  • [30] Nascimbene J., Thor G., Nimis P. L. 2013 — Effects of forest management on epiphytic lichens in temperate deciduous forests of Europe — A review — For. Ecol. Manage. 298: 27–38.
  • [31] Nimis P. L., Martellos S. 2008 — ITALIC — the Information System on Italian Lichens. Version 4.0. University of Trieste. http://dbiodbs.univ.trieste.it/IN4.0/1.
  • [32] Paoli L., Pisani T., Guttova A., Sardella G., Loppi S. 2011 — Physiological and chemical response of lichens transplanted in and around an industrial area of south Italy: Relationship with the lichen diversity — Ecotoxicol. Environ. Saf. 74: 650–657.
  • [33] Parzych A., Astel A., Zduńczyk , Surowiec T. 2016 — Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens J. Environ. Sci. Health, Part A 51: 297–308.
  • [34] Pinho P., Augusto S., Martins-Louҫão M. A., Pereira M. J., Soares A., Máguas C., Branquinho C. 2008 — Causes of change in nitrophytic and oligotrophic lichen species in a Mediterranean climate: Impact of land cover and atmospheric pollutants — Environ. Pollut. 154: 380–389.
  • [35] Pinho P., Dias T., Cruz C., Tang Y. S., Sutton M. A., Martins-Louҫão M. A., Máguas C., Branquinho C. 2011 — Using lichen functional diversity to assess the effects of atmospheric ammonia in Mediterranean woodlands — J. Appl. Ecol. 48: 1107–1116.
  • [36] Seed L., Wolseley P. A., Gosling L., Davies L., Power S. 2013 — Modelling relationships between lichen bioindicators, air quality and climate on a national scale: results from the UK OPAL Air Survey — Environ. Pollut. 182: 437–447.
  • [37] Shevtsova A., Neuvonen S. 1997 — Responses of ground vegetation to prolonged simulated acid rain in sub-arctic pine-birch forest — New Phytol. 136: 613–625.
  • [38] Shukla V., Upreti D. K. 2011 — Changing lichen diversity in and around urban settlements of Garhwal Himalayas due to increasing anthropogenic activities — Environ. Monit. Assess. 174: 439–444.
  • [39] Silberstein L., Siegel B. Z., Siegel S. M., Mukhtar A., Galun M. 1996 — Comparative studies on Xanthoria parietina, a pollution resistant lichen, and Ramalina duriaei, a sensitive species. II. Evaluation of possible air pollution — protection mechanisms — Lichenologist, 28: 367–383.
  • [40] Słaby A., Lisowska M. 2012 — Epiphytic lichen recolonization in the centre of Cracow (southern Poland) as a result of air quality improvement — Pol. J. Ecol. 60: 225–240.
  • [41] Stamenković S., Cvijan M., Arandjelović M. 2010 — Lichens as bioindicators of air quality in Dimitrovgrad (south-eastern Serbia) — Arch. Biol. Sci. 62: 643–648.
  • [42] Stevens C. J., Smart S. M., Henrys P. A., Maskell L. C., Crowe A., Simkin J., Cheffings C. M., Whitfield C., Gowing D. J. G., Rowe E. C., Dore A. J., Emmett B. A. 2012 — Terricolous lichens as indicators of nitrogen deposition: Evidence from national records — Ecol. Indicators, 20: 196–203.
  • [43] Sujetovienė G. 2009 — Acidification and eutrophication of pine (Pinus sylvestris L.) forests demonstrated by indicator species analysis — Environ. Res. Eng. Manag. 49: 29–35.
  • [44] Sujetovienė G. 2015 — Monitoring lichen as indicators of atmospheric quality (In: Recent Advances in Lichenology, Eds: D. K. Upreti, P. K. Divakar, V. Shukla, R. Bajpai) — Springer, India, pp. 87–118.
  • [45] Sujetoviene G., Sliumpaite I. 2013 — Response of Evernia prunastri transplanted to an urban area in central Lithuania — Atmos. Pollut. Res. 4: 222–228.
  • [46] van Dobben H. F., Wolterbeek H. T., Wamelink G. W. W., ter Braak C. J. F. 2001 — Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants — Environ. Pollut. 112: 163–169.
  • [47] van Herk C. M. 2001 — Bark pH and susceptibility to toxic air pollutants as independent causes of changes in epiphytic lichen composition in space and time — Lichenologist, 33: 419–442.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c10a26a-afc0-4d32-8083-352b6f7bc7cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.