Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Spatial light modulators (SLMs) are versatile devices used for optical studies. These instruments have a wide area of application in photonics. Additionally, SLMs have potential utility in different applications, such as biomedical applications, laser based surgery for precise cutting and as optical tweezers to separate cells in a petri container. However, the high cost of SLM devices prevents their widespread use in many areas, including industrial areas and scientific research laboratories. This paper demonstrates how to design a digital light processor (DLP) based low-cost SLM and describes how to obtain structured electromagnetic waves with the designed SLM. Therefore, this research was undertaken to design and produce a low-cost SLM device for optical applications. For this purpose, two prerequisites had to be fulfilled, the first was to use suitable components of a projection device with DLP-based digital micro-mirror device (DMD), and the second was to eliminate unnecessary SLM components from the system. Finally, holographic images reflected on the SLM screen were created by using Mathematica software program to change the amplitude and phase of the electromagnetic waves in order to obtain the structured electromagnetic waves.
Czasopismo
Rocznik
Tom
Strony
461--479
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Kirikkale University, Department of Electrical and Electronics Engineering, Kirikkale, Turkey
autor
- Kirikkale University, Department of Electrical and Electronics Engineering, Kirikkale, Turkey
- Bitlis Eren University, Department of Electrical and Electronics Engineering, Bitlis, Turkey
autor
- Mus Alparslan University, Department of Computer Engineering, Mus, Turkey
Bibliografia
- [1] BRÜNING R., NDAGANO B., MCLAREN M., SCHRÖTER S., KOBELKE J., DUPARRÉ M., FORBES A., Data transmission with twisted light through a free-space to fiber optical communication link, Journal of Optics 18(3), 2016, article ID 03LT01, DOI: 10.1088/2040-8978/18/3/03LT01.
- [2] WEINER A.M., Femtosecond pulse shaping using spatial light modulators, Review of Scientific Instruments 71(5), 2000, pp. 1929–1960, DOI: 10.1063/1.1150614.
- [3] JAYASINGHE A.K., ROHNER J., HUTSON M.S., Holographic UV laser microsurgery, Biomedical Optics Express 2(9), 2011, 2590–2599, DOI: 10.1364/BOE.2.002590.
- [4] HORNBECK I.L.J., ALSTYNE V., NELSON W.E., Spatial light modulator and method, U.S. Patent No.5,096,279, 1992.
- [5] TORRES J.P., Multiplexing twisted light, Nature Photonics 6(7), 2012, pp. 420–422, DOI: 10.1038/nphoton.2012.154.
- [6] NAYAR S.K., BRANZOI V., BOULT T.E., Programmable imaging using a digital micromirror array, [In] Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, 2004, pp. I-I, DOI: 10.1109/CVPR.2004.1315065.
- [7] HUANG D., TIMMERS H., ROBERTS A., SHIVARAM N., SANDHU A.S., A low-cost spatial light modulator for use in undergraduate and graduate optics labs, American Journal of Physics 80(3), 2012, pp. 211–215, DOI: 10.1119/1.3666834.
- [8] DUDLEY D., DUNCAN W.M., SLAUGHTER J., Emerging digital micromirror device (DMD) applications, Proc. SPIE 4985, MOEMS Display and Imaging Systems, (20 January 2003), pp. 14–25, DOI: 10.1117/12.480761.
- [9] JING H., CHENG W., ZHANG W., LYU R., OAM based wireless communications with non-coaxial UCA transceiver, [In] 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), 2019, pp. 1–6, DOI: 10.1109/PIMRC.2019.8904219.
- [10] FENG P.-Y., QU S.-W., YANG S., OAM-generating transmitarray antenna with circular phased array antenna feed, IEEE Transactions on Antennas and Propagation 68(6), 2020, pp. 4540–4548, DOI: 10.1109/TAP.2020.2972393.
- [11] JING H., CHENG W., LI Z., ZHANG H., Concentric UCAs based low-order OAM for high capacity in radio vortex wireless communications, Journal of Communications and Information Networks 3(4), 2018, pp. 85–100, DOI: 10.1007/s41650-018-0036-z.
- [12] PARK M.-C., LEE B.-R., SON J.-Y., CHERNYSHOV O., Properties of DMDs for holographic displays, Journal of Modern Optics 62(19), 2015, pp. 1600–1607, DOI: 10.1080/09500340.2015.1054445.
- [13] TAKAKI Y., OKADA N., Hologram generation by horizontal scanning of a high-speed spatial light modulator, Applied Optics 48(17), 2009, pp. 3255–3260, DOI: 10.1364/AO.48.003255.
- [14] NESBITT R.S., SMITH S.L., MOLNAR R.A., BENTON S.A., Holographic recording using a digital micromirror device, Proc. SPIE 3637, Practical Holography XIII, (25 March 1999), pp. 12–20, DOI: 10.1117/12.343767.
- [15] SUN B., EDGAR M. P., BOWMAN R., VITTERT L.E., WELSH S., BOWMAN A., PADGETT M.J., 3D computational imaging with single-pixel detectors, Science 340(6134), 2013, pp. 844–847, DOI: 10.1126/science.1234454.
- [16] ZHU P., FAJARDO O., SHUM J., YAN-PING ZHANG SCHÄRER, FRIEDRICH R.W., High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device, Nature Protocols 7(7), 2012, pp. 1410–1425, DOI: 10.1038/nprot.2012.072.
- [17] REN Y.-X., LI M., HUANG K., WU J.-G., GAO H.-F., WANG Z.-Q., LI Y.-M., Experimental generation of Laguerre–Gaussian beam using digital micromirror device, Applied Optics 49(10), 2010, pp. 1838–1844, DOI: 10.1364/AO.49.001838.
- [18] RODRIGO P. J., PERCH-NIELSEN I.R., GLÜCKSTAD J., High-speed phase modulation using the RPC method with a digital micromirror-array device, Optics Express 14(12), 2006, pp. 5588–5593, DOI: 10.1364/OE.14.005588.
- [19] YU, C., LI, J., LI, X., REN, X., GUPTA B.B., Four-image encryption scheme based on quaternion Fresnel transform, chaos and computer generated hologram, Multimedia Tools and Applications 77(4), 2018, pp. 4585–4608, DOI: 10.1007/s11042-017-4637-6.
- [20] SCHWERDTNER A., Method of computing a hologram for reconstructing an object using a display device, US Patent No: 10,884,377, 2021.
- [21] LEISTER N., HAUSSLER R., SCHWERDTNER A., Method and a display device for generating a holographic reconstruction of an object, US Patent No: 10,401,794, 2019.
- [22] DALLAS W.J., Phase quantization in holograms—A few illustrations, Applied Optics 10(3), 1971, pp. 674–676, DOI: 10.1364/AO.10.000674.
- [23] GOODMAN J.W., SILVESTRI A.M., Some effects of Fourier-domain phase quantization, IBM Journal of Research and Development 14(5), 1970, pp. 478–484, DOI: 10.1147/rd.145.0478.
- [24] NAIDU P.S., Quantization noise in binary holograms, Optics Communications 15(3), 1975, pp. 361–365, DOI: 10.1016/0030-4018(75)90246-1.
- [25] BROWN B.R., LOHMANN A.W., Computer-generated binary holograms, IBM Journal of Research and Development 13(2), 1969, pp. 160–168, DOI: 10.1147/rd.132.0160.
- [26] TRIPATHY A.K., DAS S.K., SUNDARAY M., TRIPATHY S.K., Particle swarm optimization for the design of high diffraction efficient holographic grating, American Journal of Computer Science and Engineering Survey 3(1), 2015, pp. 28–33.
- [27] TRIPATHY A.K., TRIPATHY S.K., PATTANAIK S.R., DAS S.K., A new algorithm for reconstruction of a computer-generated hologram (CGH), The Computer Journal 64(2), 2021, pp. 245–253, DOI: 10.1093/comjnl/bxaa151.
- [28] LOHMANN A.W., PARIS D.P., Binary Fraunhofer holograms, generated by computer, Applied Optics 6(10), 1967, pp. 1739–1748, DOI: 10.1364/AO.6.001739.
- [29] POON T.C., LIU J.P., Introduction to Modern Digital Holography with MATLAB, Cambridge University Press, 2014.
- [30] Product Folder Order Now DLP7000 DLP7000 DLP ® 0.7 XGA 2x LVDS Type A DMD, 2012. www.ti.com (accessed February 5, 2021).
- [31] DOUGLASS M.R., Lifetime estimates and unique failure mechanisms of the digital micromirror device (DMD), [In] 1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No. 98CH36173), 1998, pp. 9–16, DOI: 10.1109/RELPHY.1998.670436.
- [32] LCOS-SLM (Liquid Crystal on Silicon-Spatial Light Modulator), www.hamamatsu.com (accessed July 24, 2020).
- [33] Dlp9000Xuv, 2019. www.ti.com (accessed July 24, 2020).
- [34] https://www.ti.com/product/DLP5500 (accessed October 30, 2021).
- [35] Application Note How to connect the Control board Interface (UART, Communication and Synchronization), 2010, pp. 1–10. http://monitor.espec.ws/files/5-pin-interface_-version-2.9_-01.02.2010_194.pdf (accessed August 26, 2021).
- [36] COX M.A, DROZDOV A.V., Converting a Texas Instruments DLP4710 DLP evaluation module into a spatial light modulator, Applied Optics 60(2), 2021, pp. 465–469, DOI: 10.1364/AO.412729.
- [37] PANARIN S., MÜLLER J., PRABHAKAR S., FICKLER R., Spatial structuring of light for undergraduate laboratories, American Journal of Physics 89(2), 2021, pp. 210–219, DOI: 10.1119/10.0002365.
- [38] CARPENTIER A.V., MICHINEL H., SALGUEIRO J.R., ET AL., Making optical vortices with computer-generated holograms, American Journal of Physics 76(10), 2008, pp. 916–921, DOI: 10.1119/1.2955792.
- [39] BRAMBILLA M., BATTIPEDE F., LUGIATO L.A., PENNA V., PRATI F., TAMM C., WEISS C.O., Transverse laser patterns. I. Phase singularity crystals, Physical Review A 43(9), 1991, p. 5090, DOI: 10.1103/PhysRevA.43.5090.
- [40] BEIJERSBERGEN M.W, ALLEN L., VAN DER VEEN H.E.L.O., WOERDMAN J.P., Astigmatic laser mode converters and transfer of orbital angular momentum, Optics Communications 96(1–3), 1993, pp. 123–132, DOI: 10.1016/0030-4018(93)90535-D.
- [41] SLINGER C., CAMERON C., STANLEY M., Computer-generated holography as a generic display technology, Computer 38(8), 2005, pp. 46–53, DOI: 10.1109/MC.2005.260.
- [42] HECKENBERG N.R., MCDUFF R., SMITH C.P., WHITE A.G., Generation of optical phase singularities by computer-generated holograms, Optics Letters 17(3), 1992, pp. 221–223, DOI: 10.1364/OL.17.000221.
- [43] TRESTER S., Computer simulated holography and computer generated holograms, American Journal of Physics 64(4), 1996, pp. 472–478, DOI: 10.1119/1.18194.
- [44] NATHAN A.J., SCOBELL A., Stereolithography Materials, Processes and Applications, Springer Science & Business Media, New York, 2011.
- [45] BIGMAN H.H., Zero Spatial Chirp Vortices from Supercontinuum Modulation, San Diego State University, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c108b6a-a41b-42a6-8afd-ca2adfe899fb