Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Symulowany handel energią typu peer-to-peer z obsługą blockchain na rynku
Języki publikacji
Abstrakty
This study examines the use of Ethereum-based smart contracts to facilitate peer-to-peer energy trading in decentralized marketplaces. Energy traders submit bids and offers to smart contracts, which oversee the transaction process. Additionally, another smart contract helps energy merchants source energy from prosumers to meet their supply obligations. This research validates the efficiency of smart contracts in managing transactions within decentralized energy sources using a real-world electricity market scenario.
W tym badaniu zbadano zastosowanie inteligentnych kontraktów opartych na Ethereum w celu ułatwienia handlu energią typu peer to-peer na zdecentralizowanych rynkach. Handlowcy energią składają oferty i oferty do inteligentnych kontraktów, które nadzorują proces transakcyjny. Dodatkowo kolejna inteligentna umowa pomaga sprzedawcom energii pozyskiwać energię od prosumentów w celu wywiązania się z obowiązków w zakresie dostaw. Badanie to potwierdza skuteczność inteligentnych kontraktów w zarządzaniu transakcjami w ramach zdecentralizowanych źródeł energii z wykorzystaniem rzeczywistego scenariusza rynku energii elektrycznej.
Wydawca
Czasopismo
Rocznik
Tom
Strony
205--210
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Center for Cyber Physical Food, Energy and Water Systems, University of Johannesburg, Auckland Park 2006, South Africa
- Department of Electrical and Electronic Engineering, Bowen University Iwo, Osun State, Nigeria
autor
- Center for Cyber Physical Food, Energy and Water Systems, University of Johannesburg, Auckland Park 2006, South Africa
Bibliografia
- [1] S. L. Gbadamosi and N. I. Nwulu, “A multi-period composite generation and transmission expansion planning model incorporating renewable energy sources and demand response,” Sustain. Energy Technol. Assessments, vol. 39, no. October 2019, p. 100726, 2020, doi: 10.1016/j.seta.2020.100726.
- [2] P. Wongthongtham, D. Marrable, B. Abu-Salih, X. Liu, and G. Morrison, “Blockchain-enabled Peer-to-Peer energy trading,” Comput. Electr. Eng., vol. 94, no. September 2020, p. 107299, 2021, doi: 10.1016/j.compeleceng.2021.107299.
- [3] M. Moniruzzaman, A. Yassine, and R. Benlamri, “Blockchain and cooperative game theory for peer-to-peer energy trading in smart grids,” Int. J. Electr. Power Energy Syst., vol. 151, no. March, p. 109111, 2023, doi: 10.1016/j.ijepes.2023.109111.
- [4] S. L. Gbadamosi and N. I. Nwulu, “A comparative analysis of generation and transmission expansion planning models for power loss minimization,” Sustain. Energy, Grids Networks, vol. 26, p. 100456, 2021, doi: 10.1016/j.segan.2021.100456.
- [5] S.L. Gbadamosi, N.I. Nwulu. Harmonic estimation on a transmission system with large-scale renewable energy sources, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 97 NR 4/2021.
- [6] N.I. Nwulu, M. Fahrioglu. Investigating a ranking of loads in avoiding potential power system outages, Przeglad Elektrotechniczny, Volume 88, Issue 11 A, 2012.
- [7] J. Jasper, Albert Aruldoss. Differential evolution with random scale factor for economic dispatch considering prohibited operating zones, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013.
- [8] Rajan, K. Dhayalini , S. Sathiyamoorthy, Genetic Algorithm for the coordination of wind thermal dispatch, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 4/2014.
- [9] H. Bouzeboudja, M. Maamri , M. Tandjaoui, The Use of Grey Wolf Optimizer (GWO) for Solving the Economic Dispatch Problems based on Renewable Energy in Algeria A case study of “Naama Site”, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 6/2019.
- [10] W. Khamsen, C. Takeang, Hybrid of Lamda and Bee Colony Optimization for Solving Economic Dispatch, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 9/2016.
- [11] A. Esmat, M. de Vos, Y. Ghiassi-Farrokhfal, P. Palensky, and D. Epema, “A novel decentralized platform for peer-to-peer energy trading market with blockchain technology,” Appl. Energy, vol. 282, no. PA, p. 116123, 2021, doi: 10.1016/j.apenergy.2020.116123.
- [12] M. Afzal et al., “Role of blockchain technology in transactive energy market: A review,” Sustain. Energy Technol. Assessments, vol. 53, no. PC, p. 102646, 2022, doi: 10.1016/j.seta.2022.102646.
- [13] H. Sahebi, M. Khodoomi, M. Seif, M. S. Pishvaee, and T. Hanne, “The benefits of peer-to-peer renewable energy trading and battery storage backup for local grid,” J. Energy Storage, vol. 63, no. March, p. 106970, 2023, doi: 10.1016/j.est.2023.106970.
- [14] H. R. Bokkisam and M. P. Selvan, “Effective community energy management through transactive energy marketplace,” Comput. Electr. Eng., vol. 93, no. September 2020, p. 107312, 2021, doi: 10.1016/j.compeleceng.2021.107312.
- [15] A. Dorri, F. Luo, S. Karumba, S. Kanhere, R. Jurdak, and Z. Y. Dong, “Temporary immutability: A removable blockchain solution for prosumer-side energy trading,” J. Netw. Comput. Appl., vol. 180, no. January, p. 103018, 2021, doi: 10.1016/j.jnca.2021.103018.
- [16] Y. T. Lei, C. Q. Ma, N. Mirza, Y. S. Ren, S. W. Narayan, and X. Q. Chen, “A renewable energy microgrids trading management platform based on permissioned blockchain,” Energy Econ., vol. 115, no. March, p. 106375, 2022, doi: 10.1016/j.eneco.2022.106375.
- [17] X. Wang, Y. Liu, R. Ma, Y. Su, and T. Ma, “Blockchain enabled smart community for bilateral energy transaction,” Int. J. Electr. Power Energy Syst., vol. 148, no. July 2022, p. 108997, 2023, doi: 10.1016/j.ijepes.2023.108997.
- [18] L. Xu and B. Wang, “Peer-to-peer electricity trading considering voltage-constrained adjustment and loss allocation in blockchain-enabled distribution network,” Int. J. Electr. Power Energy Syst., vol. 152, no. March, p. 109204, 2023, doi: 10.1016/j.ijepes.2023.109204.
- [19] M. Mehdinejad, H. Shayanfar, and B. Mohammadi-Ivatloo, “Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers,” Energy, vol. 244, p. 122713, 2022, doi: 10.1016/j.energy.2021.122713.
- [20] W. Hua, J. Jiang, H. Sun, and J. Wu, “A blockchain based peer-to-peer trading framework integrating energy and carbon markets,” Appl. Energy, vol. 279, no. September, p. 115539, 2020, doi: 10.1016/j.apenergy.2020.115539.
- [21] L. Wu, W. Lu, Z. Peng, and C. Webster, “A blockchain non fungible token-enabled ‘passport’ for construction waste material cross-jurisdictional trading,” Autom. Constr., vol. 149, no. February, p. 104783, 2023, doi: 10.1016/j.autcon.2023.104783.
- [22] V. F. Yu, T. H. A. Le, and J. N. D. Gupta, “Sustainable microgrid design with peer-to-peer energy trading involving government subsidies and uncertainties,” Renew. Energy, vol. 206, no. February, pp. 658–675, 2023, doi: 10.1016/j.renene.2023.02.003.
- [23] B. R. Park, M. H. Chung, and J. W. Moon, “Becoming a building suitable for participation in peer-to-peer energy trading,” Sustain. Cities Soc., vol. 76, no. July 2021, p. 103436, 2022, doi: 10.1016/j.scs.2021.103436.
- [24] C. Zhang, T. Yang, and Y. Wang, “Peer-to-Peer energy trading in a microgrid based on iterative double auction and blockchain,” Sustain. Energy, Grids Networks, vol. 27, p. 100524, 2021, doi: 10.1016/j.segan.2021.100524.
- [25] C. Liu, Z. Wang, M. Yu, H. Gao, and W. Wang, “Optimal peer-to-peer energy trading for buildings based on data envelopment analysis,” Energy Reports, vol. 9, pp. 4604–4616, 2023, doi: 10.1016/j.egyr.2023.03.078.
- [26] Belgioioso G, Ananduta W, Grammatico S, Ocampo-Martinez C. Operationally safe peer-to-peer energy trading in distribution grids: A game-theoretic market-clearing mechanism. IEEE Trans Smart Grid 2022.
- [27] Cali U, Çakir O. Energy policy instruments for distributed ledger technology empowered peer-to-peer local energy markets. IEEE Access 2019; 7:82888–900.
- [28] Tushar W, Yuen C, Mohsenian-Rad H, Saha T, Poor HV, Wood KL. Transforming energy networks via peer-to-peer energy trading: The potential of game-theoretic approaches. IEEE Signal Process Mag 2018;35(4):90–111.
- [29] Noor S, Yang W, Guo M, van Dam KH, Wang X. Energy demand side management within micro-grid networks enhanced by blockchain. Appl Energy 2018; 228:1385–98.
- [30] Liu N, Yu X, Wang C, Li C, Ma L, Lei J. Energy-sharing model with price-based demand response for microgrids of peer-to-peer prosumers. IEEE Trans Power Syst 2017;32(5):3569–83.
- [31] Li Z, Kang J, Yu R, Ye D, Deng Q, Zhang Y. Consortium blockchain for secure energy trading in industrial internet of things. IEEE Trans Ind Inf 2017; 14(8):3690–700.
- [32] Andoni M, Robu V, Flynn D, Abram S, Geach D, Jenkins D, et al. Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Renew Sustain Energy Rev 2019; 100:143–74.
- [33] Chitchyan, R. and J. Murkin, Review of blockchain technology and its expectations: case of the energy sector. arXiv preprint arXiv:1803.03567, 2018.
- [34] Deshpande A, Stewart K, Lepetit L, Gunashekar S. Distributed ledger technologies/blockchain: challenges, opportunities and the prospects for standards. Overview report The British Standards Institution (BSI); 2017.
- [35] Morstyn T, McCulloch MD. Multiclass energy management for peer-to-peer energy trading driven by prosumer preferences. IEEE Trans Power Syst 2018;34(5):4005–14.
- [36] U. Damisa, N. I. Nwulu, and P. Siano, “Towards Blockchain Based Energy Trading: A Smart Contract Implementation of Energy Double Auction and Spinning Reserve Trading,” Energies, vol. 15, no. 11, 2022, doi: 10.3390/en15114084.
- [37] Yang X, Wang G, He H, Lu J, Zhang Y. Automated demand response framework in ELNs: Decentralized scheduling and smart contract. IEEE Trans Syst Man Cybern: Syst 2019.
- [38] Cutsem OV, Dac DH, Boudou P, Kayal M. Cooperative energy management of a community of smart buildings: A blockchain approach. Int J Electr Power Energy Syst 2020; 117:105643. http://dx.doi.org/10.1016/j.ijepes.2019.105643.
- [39] Gai K, Wu Y, Zhu L, Qiu M, Shen M. Privacy-preserving energy trading using consortium blockchain in smart grid. IEEE Trans Ind Inf 2019;15(6):3548–58. http://dx.doi.org/10.1109/TII.2019.2893433.
- [40] Hayes B, Thakur S, Breslin J. Co-simulation of electricity distribution networks and peer to peer energy trading platforms. Int J Electr Power Energy Syst 2020; 115:105419. http://dx.doi.org/10.1016/j.ijepes.2019.105419.
- [41] Fan M, Zhang X. Consortium blockchain based data aggregation and regulation mechanism for smart grid. IEEE Access 2019; 7:35929–40.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c08bbb1-923c-4b57-b2c7-261932433d3b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.