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Modelling and evaluation of deterioration process 
with maintenance activities

Modelowanie i analiza procesu starzenia maszyn i urządzeń 
poddanych okresowym remontom*

In this paper, we present an approach which allows evaluation of various possible maintenance scenarios with respect to both 
reliability and economic criteria. The method is based on the concept of a life curve and discounted cost used to study the effect of 
equipment aging under different maintenance strategies. The deterioration process is first described by a Markov model and then 
its various characteristics are used to develop the equipment life curve and to quantify other reliability parameters. Based on these 
data, effects of various “what-if” maintenance scenarios can be examined and their efficiency compared. Simple life curves are 
combined to model equipment deterioration undergoing diverse maintenance actions, while computing other parameters of the 
model allows evaluation of additional critical factors, such as the probability of equipment failure. Additionally, the paper deals 
with the problem of the model adjustment so that the computed repair frequencies are close to the historical values, which is very 
important in practical applications of the method. Moreover, we discuss the problems which may arise if automatic adjustment is 
used in cases when the hypothetical maintenance policies go beyond the conditions upon which the original model was built.

Keywords: Deterioration modelling, probabilistic methods, maintenance policy, risk assessment.

Przedmiotem artykułu jest modelowanie różnych możliwych scenariuszy eksploatacyjnych maszyn i urządzeń, które uwzględnia 
kryteria zarówno niezawodnościowe, jak i ekonomiczne. Metoda opiera się na zastosowaniu krzywych życia (ang. life curves) 
oraz kosztów zdyskontowanych (ang. discounted costs) do analizy wpływu, jaki różne strategie eksploatacyjne wywierają na 
starzenie się sprzętu. Punktem wyjścia jest opisanie procesu starzenia przez model Markowa, którego charakterystyki umożliwia-
ją następnie wyznaczenie kształtu krzywej życia oraz obliczenie innych parametrów niezawodnościowych badanego sprzętu. W 
oparciu o uzyskane dane możliwa jest ocena różnych hipotetycznych scenariuszy eksploatacyjnych oraz porównanie ich efektyw-
ności. Proste krzywe życia mogą być łączone ze sobą w celu wizualizacji starzenia sprzętu poddawanego różnorodnym możliwym 
czynnościom naprawczym, natomiast obliczenie innych charakterystyk modelu pozwala wyznaczyć dodatkowe ważne parametry, 
takie jak prawdopodobieństwo uszkodzenia. Dodatkowo artykuł opisuje zagadnienie korygowania parametrów modelu, tak aby 
obliczane w nim częstości napraw sprzętu były bliskie wartościom znanym z jego historii eksploatacji, co jest bardzo ważne w 
praktycznych zastosowaniach metody. Omawiamy także problemy mogące pojawić się, gdy algorytm automatycznego korygo-
wania modelu jest stosowany w analizach hipotetycznych strategii eksploatacyjnych wykraczających poza warunki, dla których 
model oryginalny został opracowany.

Słowa kluczowe: modelowanie procesu starzenia, metoda probabilistyczna, polityka remontowa, ocena ryzyka.

1. Introduction

Selection of an efficient maintenance strategy plays a  very im-
portant role in the management of today’s complex systems. When 
searching for an optimal strategy, numerous issues must be taken into 
account and, among them, reliability and economic factors are often 
equally important. On the one hand, for obvious reasons, in successful 
system operation failures should be avoided and this opts for extensive 
and frequent maintenance activities. On the other, superfluous mainte-
nance may result in large and unnecessary costs. Finding a reasonable 
balance between these two factors is the key point in efficient main-
tenance management and to facilitate finding such a balance some 
measures should be available that allow for quantitative evaluation 
of the deterioration process of a system which is subjected to various 
maintenance actions (inspections, repairs, replacements, etc.).

The purpose of the development described in this work is to pro-
vide a computer tool for evaluating both the risks and the costs as-
sociated with the selection of various possible maintenance strategies. 
Rather than searching for a solution to a problem: “what maintenance 

strategy would lead to the best reliability and dependability param-
eters of the system operation”, in this approach different maintenance 
scenarios can be examined in the “what-if” type of studies and then, 
using the tool, their reliability and economic effects can be automati-
cally estimated so that the persons managing the maintenance is as-
sisted in making informed decisions ([13, 34]). The mathematical ap-
proach that form the basis of this tool uses semi-Markov model first 
introduced in 1990 [4] and then improved and extended in [1 – 3, 5 
– 6, 10 – 18, 22 – 32].

The method of maintenance evaluation which is the subject of 
this work has been presented initially in [8] and its specific extensions 
were further described in [26 – 28]. In this paper, after summarizing 
the current state of the development in Sections 2 and 3, we discuss 
one particular problem of automatic adjustment of the model which 
is required for representation of the deterioration process with modi-
fied repair frequencies (Section 4) and, finally, we include an original 
study of practical application that illustrates potential of this method 
in real-world situations (Section 5).
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2. Modelling deterioration and maintenance

Probabilistic maintenance models [1 – 8, 11 – 12, 14, 21 – 25, 
31] are the preferred tools for quantifying the effect of inspection and 
maintenance on reliability and costs. Their important advantage, apart 
from relative simplicity even when applied for complex technical sys-
tems or elements, is the ability to incorporate uncertainties associated 
with the deterioration of equipment and the outcomes of inspection 
and maintenance. The impact which maintenance makes on perform-
ance of the system – on both its reliability parameters and operational 
effectiveness – can be analysed with various performance measures, 
including: cost of performing inspection, maintenance and repair [8, 
11 – 12, 15, 18, 22 – 23, 25, 31], unavailability (or availability) [2, 
11, 25, 31], frequency of failure [15], first passage time (FPT) [18, 
21], cost of interruption or cost of lost revenue [15]. As investigated 
in [32],  additional care must be paid when analysing maintenance 
with non-periodic inspections because classic models may be unable 
to provide accurate results in such situations. To handle them appro-
priately new probabilistic models have been proposed in [1, 3].

In the typical approach, maximizing the performance measures 
becomes the objective of maintenance optimization like, for example 
in [12, 23], when single objective optimization is aimed at minimiza-
tion of the operation and maintenance cost. In the more comprehen-
sive solutions, the optimization has two objectives, e.g., to maximize 
the availability and to minimize the cost [11, 31] or to maximize the 
FPT while minimizing life cycle cost and unavailability [25]. In the 
latter solution, the objective function is formulated by assigning dif-
ferent weight factors for FPT, unavailability and life cycle cost.

In general, tuning parameters of the maintenance policy in the 
search of the optimal configuration can be realized using sensitivity 
analyses or optimization techniques. For example, modification of the 
inspection rates is used in [2, 18, 22] where sensitivity analyses were 
applied to investigate the behaviour of reliability and cost measures. 
In [11, 25, 31] the task is solved using optimization methods based on 
simulated annealing algorithm and Markov decision process. 

At the heart of the methodology proposed in this paper is the 
probabilistic model that assumes that the equipment will deteriorate 
in time and, if not maintained, will eventually fail. If the deterioration 
process is discovered, preventive maintenance is performed which can 
restore the condition of the equipment. Such a maintenance activity 
will return the system to a specific state of deterioration, whereas re-
pair after failure will restore to “as new” condition [5, 17]. The main-
tenance policy components that must be recognized are: monitoring 
or inspection (how the equipment state is determined), the decision 
process (which determines the outcome of the decision), and finally, 
the maintenance actions (or possible decision outcomes).

2.1.	 Construction of the model

All the necessary assumptions about the aging process and main-
tenance activities can be incorporated in an appropriate state-space 
(Markov) model [11, 14, 16, 19, 24, 33].  It consists of the states the 
equipment can assume in the process, and the possible transitions be-
tween them.  In a Markov model, the rates associated with the transi-
tions are assumed to be constant in time.

The method described in this work uses a model of the Asset 
Maintenance Planner (AMP) [6–7]. The AMP model is designed for 
equipment exposed to deterioration but undergoing maintenance at 
prescribed times.  It computes the probabilities, frequencies and mean 
durations of the states of such equipment.  The basic ideas in the AMP 
model are the probabilistic representation of the deterioration process 
through discrete stages, and the provision of a link between deterio-
ration and maintenance. For a structure of a typical AMP model see 
Fig. 1.

In the model, the deterioration progress is represented by a chain of 
deterioration states D1 … DK which leads to the state F symbolizing 

occurrence of a failure. In most situations, it is sufficient to represent 
deterioration by three stages: an initial (D1), a minor (D2), and a major 
(D3) stage (K = 3).  This last is followed, in due time, by equipment 
failure (F) which requires extensive repair or replacement.

In order to slow deterioration and thereby extend equipment life-
time, the operator will carry out maintenance according to some pre-
defined policy.  In the model of Fig. 1, regular inspections (Is) are 
performed which result in decisions to continue with minor (Ms1) or 
major (Ms2) maintenance or do nothing (more than two types of re-
pairs can also be included). The expected result of all maintenance 
activities is a single-step improvement in the deterioration chain; 
however, allowances are made for cases where no improvement is 
achieved or even where some damage is done through human error in 
carrying out the maintenance, which results in returning to the stage 
of more advanced deterioration.

The choice probabilities (at transitions from inspection) and the 
probabilities associated with the various possible outcomes are based 
on user input and can be estimated, e.g., from historical records or 
operator expertise.

Mathematically, the model in Fig. 1 can be represented by a 
semi-Markov process, and solved by the well-known procedures. 
The solution will yield all the state probabilities, frequencies and 
mean durations. Moreover, the model can be further analysed using 
Monte Carlo methods: starting from any given state Dk, transitions 
of the system are simulated until the failure state F is reached and the 
corresponding time moments are recorded as the values of the first 
passage times (FPT) to failure. These times are subsequently taken 
as the estimates of the mean remaining lifetimes in each deterioration 
state. Specific issues arising in numerical implementation of this idea 
are discussed in [20].

2.2.	 Using the model to estimate the life curve and the pro-
bability of failure

A convenient way to represent the deterioration process is by the 
life curve of the equipment [5].  Such a curve shows the relationship 
between asset condition, expressed in either engineering or financial 
terms, and time. For examples please refer to Fig. 3 in Section 5 where 
life curves will be used in a case study presenting various types of 
analysis carried out for evaluation of the maintenance scenarios.

As pointed out above, computing the average first passage time 
(FPT) from the first deterioration state (D1) to the failure state (F) 
yields an average lifetime of the equipment, i.e., the length of its life 
curve. On the other hand, solving the model for the state probabili-
ties makes possible computing the expected state durations, which 
are used to determine the shape of the curve (some additional deci-
sions are required as to how the deterioration states are mapped to 
the ranges of the asset condition values, which is discussed in [8] and 
[29]). Simple life curves obtained for different maintenance policies 
can be later combined if constructing composite life curves which de-

Fig. 1.	 Structure of the state-transition model which represents the deteriora-
tion process together with the inspection and repair events (an example 
with two types of repairs is shown).
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scribe various maintenance scenarios are required (as an example see 
Fig. 4 in Section 5).

Having the model and the life curve, one can compute the probabil-
ity of failure (PoF) within given time period T for the equipment which 
is in some specific asset condition. The procedure is as follows:
1°	 For the current asset condition (an input parameter), find from the 

life curve the corresponding deterioration state Ds and then com-
pute a state progress SP (%), i.e., estimate how long the equip-
ment has already been in the Ds state (this is calculated with the 
assumption that the value of asset condition decreases with con-
stant rate when the system remains in Ds, hence simple propor-
tionality rule can be used).

2°	 Running FPT analysis on the model, find the distributions Ds(t) 
and Ds+1(t) of the first passage time from the current state Ds and 
the subsequent deterioration state D(s+1), to the failure state F.

3°	 Interpreting the state progress as a weight which balances the cur-
rent equipment condition between Ds and D(s+1), estimate the 
final value of the probability as:

	 PoF  =  Ds(T)·(1 – SP)  +  Ds+1(T)·SP	 (1)

3. Automatic adjustment of the model

Preparing the Markov model for some specific equipment is not 
an easy task and requires expert intervention. The goal is to create the 
model representing closely the real-life deterioration process known 
from the records that usually describe equipment operation under a 
regular maintenance policy with some specific frequencies of inspec-
tions and repairs. The model itself permits calculation of the repair 
frequencies and compliance of the computed and recorded frequen-
cies is a very desirable feature that verifies the trustworthiness of the 
model.

At this point, we will describe briefly a method of model adjust-
ment proposed in [26] and [29] that aims at reaching such a compli-
ance. It can be used also for a different task: fully automatic generation 
of a model for a new maintenance policy with modified frequencies of 
repairs which is very often required during the evaluation of various 
hypothetical maintenance options.

3.1. The method

Let K represents the number of deterioration states and R the 
number of repairs in the model under consideration. Also, let Psr = 
probability of selecting maintenance r in state s (assigned to decision 
after state Is) and Ps0 = probability of returning to state Ds from in-
spection Is (situation when no maintenance is scheduled as a result of 
the inspection). Then, for all states s = 1 … K:

	 0P P 1s sr

r
+ =∑ 	 (2)

Let Fr represents the frequency of repair r acquired through solv-
ing the model. The problem of model tuning can be formulated as 
follows:

Given an initial Markov model M0, constructed as above and pro-

ducing the frequencies of repairs 1 2
0 0 0 0F ,F ,...FR =  F , adjust the prob-

abilities Psr so that some goal frequencies FG are achieved.
Since the model presented in Fig. 1 has many parameters, one 

could devise different approaches manipulating their values to achieve 
the desired effect. We have selected to vary the probability values 

since these are usually guessed by an expert whereas the repair rates 
and their durations are largely based on historical records. 

The vector FG usually corresponds to the observed historical val-
ues of the frequencies of various repairs but can also represent new 
hypothetical repair frequencies of some possible maintenance policy. 
In the proposed solution, a sequence of tuned models M0, M1, M2,… 
MN is evaluated with each consecutive model approximating desired 
goal with a better accuracy. Starting with i = 0 the procedure consists 
of the following steps:
1°	 For model Mi compute the vector of repair frequencies Fi.
2°	 Evaluate an error of Mi as a distance between vectors FG and Fi.
3°	 If the error is within the user-defined limit, consider Mi as the 

final model and stop the procedure (N = i); otherwise proceed to 
the next step.

4°	 Create a new model Mi+1 through tuning values of Psr
i , then cor-

rect 0Ps
i  according to (2).

5°	 Proceed to step 1° with the next iteration.

3.2.	 Approximating model probabilities

Of all the steps outlined in the previous section, it is clear that tun-

ing the probabilities Psr
i  in step 4° is the heart of the whole procedure.

In general, the probabilities represent K·R free parameters and 
their uncontrolled modification could lead to a serious deformation 
of the model. To avoid this, a restrictive assumption is made: if the 
probability of some particular maintenance must be modified, it is 
modified proportionally in all deterioration states, so that at all times

	 1
0P r : 2

0P r : … : 0PKr   ~  1P r
i : 2P r

i : … : PKr
i  	 (3)

for all repairs (r = 1…R).
This assumption also significantly reduces dimensionality of the 

problem, as now only R scaling factors Xi+1=[ 1
1Xi+ ,  2

1Xi+ , …  1XR
i+ ] 

must be found to get all new probabilities for the model Mi+1:

	 1 1 0P X Psr r sr
i i+ += ⋅ ,   r = 1…R,  s = 1…K	 (4)

Moreover, although the frequency of a repair r depends on the 
probabilities of all repairs (modifying probability of one repair chang-
es, among others, state durations in the whole model; thus, it changes 
the frequency of all states) it can be assumed that, in a case of a single-
step small adjustment, its dependence on repairs other than r can be 
considered negligible and

	
F F X X X F Xi

r
i
r

i i i
R

i
r

i
r= ( ) ≈ ( )1 2, ...

	 (5)

With these assumptions, generation of a new model is reduced to 
the problem of solving R non-linear equations in the form of 

F X Fi
r

i
r

G
r( ) = . This can be accomplished with one of the standard 

root-finding algorithms.
One point of the procedure requires additional attention, though: 

applying equation (4) with Xi+1 > 1 may violate the condition

	 1
1
P 1

R
sr
i

r
+

=
≤∑ 	 (6)
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in some deterioration state s. This situation needs special tests that 
would detect such illegal probability values and reduce them propor-
tionally so that their sum does not exceed 1: a so called scale-down 
transformation needs to be applied. As practical studies show, such 
conditions do occur during model tuning towards repair frequencies 
that are remarkably higher than 0Fr  from the initial model M0. In its 
simplest form, the scale-down operation consists in dividing each 
probability Psr in the offending state s by the sum of all repair prob-
abilities in this state:

	
1

P P , P
R

sr sr sr
Ds Ds

r
S S

=
= = ∑ 	 (7)

This will also imply that Ps0 = 0 which means that every inspection 
ends with some repair and there are no direct returns from Is state to 
Ds. Moreover, this obligatory correction mechanism can result in a 
violation of the proportionality rule (3), as an inevitable side effect.

3.3.	 Numerical implementation

The following three approximation algorithms were implement-
ed in the task of solving equation (5): Newton method working on a 
linear approximation of Fr functions (the NOLA method), the secant 
method and the false position (falsi) method. For their detailed pres-
entation please refer to [26] and [29].

Generally, if the scale-down operation (7) does not disturb the 
iteration flow, any of the approximation algorithms can arrive at the 
requested goal frequencies with just a few steps, even if imposed pre-
cision margins are very narrow. The iterative scheme is very efficient 
with regard to this aspect. Moreover, practical tests have shown that 
although simplifications of the NOLA solution may seem critical, it is 
reasonably efficient and stable in the real-world cases because it has 
one advantage over its more sophisticated rivals: since it does not de-
pend on previous approximations, selection of the starting point is not 
so important and the accuracy during the first iterations is often better 
than in the secant or falsi methods. Superiority of the latter methods, 
especially of the falsi algorithm, manifests itself in the later stages of 
the approximation when the potential problems with initial selection 
of the starting point have been diminished.

4. Correction of the adjustment procedure for saturated 
models

Adjusting the model to the repair frequencies that are substantially 
higher than the original ones may lead to the model saturation – a con-
dition in which repair probabilities reach the limit (6) in every state Ds 
and there is no room for further increase if the adjustment procedure 
is limited only to the simple probability scaling as expressed in equa-
tion (4). In this situation, bringing together the two requirements: tun-
ing the model towards high repair frequencies and, at the same time, 
keeping the modifications of the internal structure within a safe range 
that does not break proper relation with the original, is a challenge and 
is discussed in this section.

4.1.	 The problem

For practical illustration of the problem we will use two real-
world Markov models, A and B that are especially prone to probabil-
ity saturation. Both models have the same general structure with K = 
R = 3, i.e., they include three deterioration states (D1 ÷ D3) and three 
repairs: minor (index = 1), medium (2) and major (3). The main differ-
ence between them lies in the distributions of the repair probabilities 
Psr in the deterioration states (or, strictly speaking, in inspection states 
I1 ÷ I3 associated with the deterioration states, as in Fig. 1).

The model A has been created with an assumption that although 
there are no repairs in the first state D1, when the equipment is in 
subsequent states D2 and D3 every inspection leads to some sort of 
repair and the totals SD2 = SD3 = 1 (P20 = P30 = 0). Actual probability 
distribution in each state is chosen so that in the medium deterioration 
state D2 the minor repair is the most common (P21 = 0.80) while in the 
major deterioration D3 the distribution is more balanced with medium 
repair taking half of the chances (P32 = 0.50).

The model B is a sibling of A with just one difference: repair prob-
abilities in D2 and D3 are lowered by, respectively, 20% and 10%, 
which means that after inspections I2 and I3 it is possible to return to 
Ds without undertaking any repair (P20 = 0.2 and P30 = 0.1). From the 
point of view of the current discussion, model B, as opposite to model 
A, has more potential for the probability growth.

In the following analysis, a series of models for the goal frequen-
cies will be generated in cases A and B 

	 FG = ⋅



α F F F0

1
0
2

0, , 3

with factor α increasing from 0.5 (frequency of the minor repair re-
duced by half) to 2.0 (minor repair performed twice as often) in steps 
of 0.1. Values of α will be expressed as %. Frequency of the minor 
repair (no. 1) was selected as the varying parameter in FG just as an 
example with frequencies of the other repairs remaining constant, but 
equivalent results could be demonstrated with changing the frequen-
cies of medium or major repairs.

As it was discussed with greater detail in [30], both models can 
be successfully adjusted only up to the point of saturation which is 
reached for α = 100% for model A (i.e., the initial model is already sat-
urated) and 130% for model B. As it turns out, in this particular case 
the values P20 = 0.2 and P30 = 0.1 in model B leave enough room for 
approximately 30% increase of F1. In both saturation situations prob-
abilities in the states D2 and D3 sum up to unity and cannot be further 
increased, while in D1 the P11 is zero and applying the scaling factor 
as in equation (4) cannot produce any increase. On the other hand, the 
procedure has no problems with an adjustment towards frequencies 
lower than the saturated ones and, in such cases, the probabilities are 
scaled accordingly.

4.2.	 Modification of the adjustment procedure

The above examples of unsuccessful tuning can be used for il-
lustration of the proposed extension to the algorithm: if the model 
gets saturated after some adjustment iteration but there is still a state 
with null repair probability, the process can be continued in the same 
iterative way after some non-zero probability is added in this state. 
Such modification, though, goes beyond the restrictive assumption 
expressed by equation (3) and, being a more serious invasion into the 
model structure, must be applied in a cautious and thoughtful manner.

In particular, the following two issues must be taken into account: 
(1) forcing non-zero probability in some state before it is not abso-
lutely necessary, i.e., prior to the model saturation, instantly changes 
reaction to the adjustment iterations; hence, may change the final re-
sult of the tuning also in cases when the standard procedure would be 
able to produce the correct result; (2) replacing the null value of Psr, 
even if delayed up to the moment of saturation, but with probability 
which is too high for the actual needs, also may affect the final result 
in a way that is against the general idea of conservative tuning which 
should try to preserve the structure of the original model with minimal 
possible modifications. Consequences of the improper modifications 
that violate the above rules were presented in [30].

After analyses of numerous case studies like the above two exam-
ples, the following modification of the adjustment procedure has been 
found to be the most flexible and efficient solution that gives optimal 
results in a broad range of practical cases. Its main idea is not only 
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to delay the increase of null probability until the moment of model 
saturation, but also to scale its value adequately.

The modification does not amend the general iterative scheme de-
fined in point 3.1 in steps 1º ÷ 5º; the changes are limited only to the 
internal details of step 4º, which computes new probability values for 
the next model Mi+1. The modified implementation of this operation 
detects and deals differently with the following two cases:
(a)	 If the model is not saturated, i.e., there is a state with 0 < SDs < 

1, the standard approach is applied: in all states the values of Psr 
are multiplied by the scaling factors Xr (equation (4)) and then, if 
required, they are scaled down as in equation (7).

(b)	 If the model is saturated but there is a state with Psr = 0 (a chance 
for probability increase), this particular null probability is replaced 
with a predicted average increase of Psr in other states computed 
by the regular method as described above; after this the model is 
no longer saturated and the iterative scaling of this probability can 
be continued with the standard algorithm.
It should be noted that in case (b) the new value that replaces 

the null probability is computed as an average of the predicted actual 
increases of probabilities for a given repair in other states: these in-
creases will be scaled down with equation (7) because these states, by 
virtue of the method, will be saturated. As a result, the applied value 
of the increase will be proportional to the needs of particular situation 
but, at the same time, it will be additionally constrained.

Figure 2 presents the results obtained after application of this 
extended procedure to the models A and B: the upper graphs shows 
probabilities of the minor repair in all three deterioration states (Ps1) 
and the lower graphs – sum of all repair probabilities in every state 
(SDs). For both models, the adjustment can be successfully completed 
beyond the point of saturation, i.e., up to the doubled frequency of the 
minor repair, while for goal frequencies without model saturation (a < 
100% for model A and α < 130% for model B) the results are identical 
to the outcomes of the standard (unmodified) procedure.

Moreover, the graphs unveil the actual mechanism of model ad-
justment. Before saturation P11 = SD1 = 0 and scaling only P21 and P31 
is enough for reaching the goal frequencies. At the point when this 
becomes insufficient (α = 110% and α = 140%) the null values of P11 

are increased and further growth is limited to the D1 state with the 
other two remaining saturated.

5. Evaluating reliability and cost for different mainte-
nance strategies

The methodology presented in the two previous sections will be 
now illustrated by a practical example of maintenance evaluation. The 
example is based on a real-world piece of equipment with a model 
created and fine-tuned so that it represents the actual reliability and 
maintenance parameters found in the historical records. According to 
them, the average equipment life has been found to reach 18.7 years 
of operation before failure. The model includes three deterioration 
states and represents the default maintenance policy with three pos-
sible repair types corresponding to, respectively, minor, medium and 
major repairs.

5.1.	 Life curves

Fig. 3 presents life curves computed for this equipment with vari-
ous repair policies. The rightmost one represents the standard (his-
torical) policy with all three repairs implemented with their typical 
frequencies, while the leftmost one – corresponding to the average 
equipment life of approx. 10 years – has been created from the model 

with all repairs removed (so called “do nothing” 
policy). As it is shown, in this specific case, 
turning off all the maintenance actions results 
in shortening of the equipment life by 46% and 
this fact can be compared to expected economic 
savings. The other three curves represent the 
following mid-range scenarios which were se-
lected in this work as typical examples of the 
solutions that may be considered in the real-
world applications:

turning off the major repair without chang-––
ing the frequencies of the remaining two 
ones (minor and medium), which has been 
evaluated to reduce the average equipment 
life to 14.7 years (i.e. by 21%),
keeping only the medium repair with minor ––
and major ones removed (equipment life re-
duced by 28% to 13.4 years),
reducing by half the frequencies of all three ––
repairs (equipment life reduced by 40% to 
11.3 years).
It should be stressed that in the three mid-

range cases the curves have been computed us-
ing models that were tuned to required repair 
frequencies with the numerical procedure de-
scribed earlier in this paper.

Having such models not only the shape and 
length of the curves can be evaluated, but also 

other significant reliability characteristics, with the probability of fail-
ure within the specific time horizon being one of the most important 
in further analysis.

5.2.	 Maintenance scenarios

The models and the life curves for different repair policies can be 
used for evaluation of various maintenance scenarios. As examples, 
we will consider a situation when, with an initial equipment deteriora-
tion estimated as 80% of “as new” condition, some specific actions – a 
repair or just a change in maintenance policy – will take place after 
a 3 year delay while the effects will be evaluated for a 10 year time 
period. The actions in the scenarios will be as follows:

Fig. 2.	 Successful tuning of the models A (left) and B (right) beyond the point of model saturation by the 
proposed extension of the adjustment procedure.
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adopting “do nothing” policy, which means just stopping all in-––
spections and repairs; in case of failure the equipment will be 
refurbished and its condition restored to 85%,
replacing the equipment with “as new” one and then switching ––
to the “do nothing” policy,
performing a major refurbishment of the equipment which re-––
stores its condition to 85% and then continuing with a medium 
repair only.

Fig. 4 shows the composite life curves created over a period of 
10 years for the above scenarios and compares them to the “continue 
as before” policy. The composite curves were constructed with the 
appropriate segments of the basic curves form Fig. 3. Starting from 
the initial asset condition of 80% of the initial asset value, which cor-
responds to the equipment ca. 8 year old, the curves run down to 72% 
during the first three years and then split at the moment of the action. 
For the “do nothing” action deterioration rate speeds up, while for 
the two other actions the asset condition is first increased as a result 
of the replacement or refurbishment and, then, a new reduced repair 
policy is applied, which again causes a higher rate of deterioration. 
The shapes of the curves make possible a quantitative comparison of 
these processes and allow evaluation of their effects.

It can be noted that, in the case of “do nothing” action, it is pre-
dicted that the equipment will fail within the time horizon under con-
sideration. While in such a case, different actions (repairs or replace-
ments) may take place, in this specific scenario it is assumed that the 
equipment will be repaired with its condition restored to 85%, but 
other courses of action can also be modelled.

5.3.	 Probability of failure

Probability of failure within the time horizon computed for the 
strategies under consideration is shown in Fig. 5. Values on the graphs 
are presented as functions of the action delay time (100% = 3 years) 

and they are compared against the probability of failure for the un-
modified standard maintenance (“continue as before”). The value of 
this probability has been computed to be 42%.

It can be seen in case of all three scenarios that, since the new 
maintenance policy after the action is more or less reduced, the more 
the action is delayed, the less probable equipment failure becomes. 
For evident reasons adopting “do nothing” policy leads to the highest 
values of the failure probability, while replacing the equipment and 
“doing nothing” afterwards turned out to be a less dangerous strategy 
(in terms of failure probability) than refurbishing and then keeping 
only the medium repair. Whether the differences in the economic ex-
penses of these two possible strategies justify this discrepancy in the 
reliability parameter or not – remains an open question and generally 
depends on the costs associated with the equipment failures.

One interesting observation can be made about the curve for “do 
nothing” strategy: its decrease is not strictly monotonic and there is a 
local minimum at the level of 61% for the delay equal to 164% (4.9 
years) after which the probability begins to rise slowly. To explain this 
rise, the two components: the probability of failure before and after 
the action should be investigated and they are shown in Fig. 6. In gen-
eral, these two components behave as expected: the later the action 
takes place, the higher the probability of failure before and the lower 
probability of failure after the action but the rates of these two flows 
– increasing and decreasing – are not constant and do not sum up into 
a monotonic decrease. In this case, the probability of failure after the 
action falls down to some extent slower after the point of 164% and 
this causes the local minimum in the total probability of failure.

5.4.	 Cost analysis

In financial evaluations, the costs are expressed as the present val-
ue (PV) quantities and this approach should also be used in this kind 
of studies because maintenance decisions on aging equipment include 

Fig. 3. Life curves for equipment with different repair policies

Fig. 4.	 Life curves for different maintenance scenarios over a time horizon of 
10 years

Fig. 5.	 Probability of equipment failure within a period of 10 years as a func-
tion of action delay

Fig. 6.	 Probability of equipment failure before and after the action for “do 
nothing” scenario
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timing, and the time value of money is an important consideration in 
any decision analysis. The cost difference is often referred to as the 
Net Present Value (NPV). In the case of maintenance, the NPV can be 
obtained for several re-investment options which are compared with 
the “Continue as before” policy. 

Cost evaluation for any maintenance scenario involves calcula-
tion of the following three fundamental classes of components:

cost of the maintenance activities,1.	
cost of the selected action (i.e., refurbishment or replace-2.	
ment),
cost associated with failures (cost of repairs, system cost, pen-3.	
alties).

To compute the PV, inflation and discount rates are required for the 
specified time horizon.  The cost of maintenance over the time horizon 
is the sum of the maintenance costs incurred by the original mainte-
nance policy for the duration of the delay period (up to the action), and 
the costs incurred by the new policy for the remainder of the time hori-
zon (after the action). The costs associated with the equipment failure 
over the time horizon can be computed similarly except that the failure 
costs before and after the action should be multiplied by the respective 
probabilities of failures, and the two products added.

Fig. 7 presents the plots showing the cost analysis for the exem-
plary scenario “replace and then do nothing”. Again (as it was in the 
case of the probability of failure) the values are visualized as functions 
of the action delay varying in the range 0 ÷ 200% of the user-specified 
reference value. In this particular case, this value was 3 years and the 

costs correspond to the estimated expenses over the period of 10 years 
(i.e., for 150% delay one can read the costs incurred over the period 
of 10 years evaluated for situation when the replacement was delayed 
for 4.5 years).

The “Maintenance” component that can be seen in this figure in-
cludes inspection and repair costs that were incorporated in the model 
and, since in this scenario there is no maintenance after the replace-
ment, for 0% delay (the action done immediately) all the maintenance 
activities are suspended from the start of the time horizon and the 
value of this component falls to zero. Only after delaying the action 
by 35% the first repair is expected to be performed (incurring some 
non-zero cost) while the further increase of this delay causes more 
and more repairs to take place – hence several noticeable jumps ap-
pear in the flow of this curve. As for the cost of the replacement itself 
(“Action”), although it does not depend on the delay, is not constant 
due to the PV calculations. Also cost of the failure (loss of equipment, 
penalties, loss of revenue, repair cost, etc.) although assumed to be 
constant for each specific scenario, in this analysis fluctuates due to 
changes in probabilities of failure (estimated separately for the peri-
ods before and after the action) and, to a lesser extent, also due to the 
PV calculations.

6. Conclusions

The purpose of the method presented in this paper is to help the 
maintenance supervisor in choosing an effective yet cost-efficient 
maintenance policy. Based on the Markov models representing de-
terioration process, the equipment life curve and other reliability 
parameters can be evaluated. Once a database of equipment models 
is prepared, the end-user can perform various studies with differ-
ent maintenance strategies and compare expected outcomes. As the 
results are visualized through the relatively simple concept of a life 
curve, no detailed expert knowledge about internal reliability param-
eters or configuration is required.

Additionally, we have presented a method for automatic adjustment 
of a given deterioration model to the requested new repair frequencies. 
Such a task arises often either in fine-tuning of the model to histori-
cal records of equipment operation or during analyses of the possible 
hypothetical maintenance options. The proposed adjustment method 
strives to be as conservative as possible with regard to the amount of 
alterations introduced to the existing model in order to avoid its defor-
mation and, consequently, corruption of the produced results. 

Fig. 7.	 Estimated cost of “replace & do nothing” scenario (the total value 
and the three components)
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