PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of an experimental setup for structural damping identification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper, an experimental setup for structural damping determination arising from energy dissipations within the material is presented. The experimental setup is developed in such a way that all unintended damping sources are eliminated. In this connection, priority is also given to the reproducibility of the experimental data. In addition, a vacuum chamber is developed to reduce the damping arising from the interaction with the surrounding medium. Furthermore, beam-shaped specimens are clamped in a suspended way, using screws with an apex to fix the specimens in their nodes of vibration. Then, the influence of test rig specific parameters on the damping value is analyzed. In this context, an ideal setup of the test rig is identified to measure structural damping values arising from dissipations within the material. Finally, a common model for material damping description is parameterized using the experimental data.
Rocznik
Strony
27--39
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
  • Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
  • Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
  • Leibniz Universität Hannover, Institute of Dynamics and Vibration Research, Hannover, Germany
autor
  • ALSTOM Power, Steam Turbines and Generators, Baden, Switzerland
  • ALSTOM Power, Steam Turbines and Generators, Baden, Switzerland
Bibliografia
  • 1. ANSYS Inc., 2009, Advanced Analysis Techniques Guide, ANSYS Inc., Release 12.0, Canonsburg
  • 2. Bert C.W., 1973, Material damping: an introductory review of mathematical models measures and experimental techniques, Journal of Sound and Vibration, 29, 129-153
  • 3. Gibert C., Blanc L., Almeida P., Leblanca X., Oustyb J.P., Thouvereza F., Laıne J.-P., 2012, Modal tests and analysis of a radial impeller at rest: influence of surrounding air on damping, Proceedings of ASME Turbo Expo 2012, Power for Land, Sea and Air, Copenhagen Denmark, Paper GT2012-69577
  • 4. Gibson R.F., Plunkett R., 1977, A forced-vibration technique for measurement of material damping, Journal of Experimental Mechanics, 17, 297-302
  • 5. Granick N., Stern J.E., 1965, Material damping of aluminum by a resonantdwell technique, NASA Technical Note, National Aeronautics and Space Administration, Washington D.C., USA, NASA TN D-2893
  • 6. Gudmundson P., Wuthrich C. ¨ , 1986, Die Werkstoffdampfung von Stahlen bei hohen Dehnungsamplituden, Materialwissenschaft und Werkstofftechnik, 17, 286-292, Weinheim, Germany
  • 7. He J., Fu Z.F., 2001, Modal Analysis, Butterworth Heinemann, Oxford Auckland Boston Johannesburg Melbourne New Dehli
  • 8. Hentschel O.P., Panning-von Scheidt L., Wallaschek J., Denk M., 2015, Introduction and evaluation of a damping determination method based on a short-term fourier transform and resampling (STFR), Journal of Theoretical and Applied Mechanics, 53, 2, 395-407
  • 9. Krack M., Panning L., Wallaschek J., Siewert C., Hartung A., 2012, Robust design of friction interfaces of bladed disks with respect to parameter uncertainties, Proceedings of ASME Turbo Expo 2012, Power for Land, Sea and Air, Copenhagen Denmark, Paper GT2010-68578
  • 10. Laborenz J., Siewert C., Panning L., Wallaschek J., Gerber C., Masserey P.A., 2010, Eddy current damping: a concept study for steam turbine blading, Journal of Engineering for Gas Turbines and Power, 132, 1-7
  • 11. Lazan B., 1968, Damping of Materials and Members in Structural Mechanics, Pergamon Press, Oxford London Edinburgh New York Toronto Sydney Paris Braunschweig
  • 12. Petrov E.P., Ewins D.J., 2006, Effects of damping and varying contact area at blade-disk joints in forced response analysis of bladed disk assemblies, Journal of Turbomachinery, 128, 403-410
  • 13. Plunkett R., 1959, Measurement of damping, [In:] Structural Damping, Ruzicka J. (Edit.), ASME, 117-131, Atlantic City NJ USA
  • 14. Rice T., Bell D., Singh G., 2007, Identification of the stability margin between safe operation and the onset of blade flutter, Proceedings of ASME Turbo Expo 2007, Power for Land, Sea and Air, Montreal Canada, Paper GT2007-27462
  • 15. Richardson M.H., Formenti D.L., 1982, Parameter estimation from frequency response measurements using rational fraction polynomials, Proceedings of the First International Modal Analysis Conference, Orlando FL USA, 167-180
  • 16. Siewert C., Panning L., Gerber C., Masserey P.A., 2010, Numerical and experimental damping prediction of a nonlinearly coupled low pressure steam turbine blading, Proceedings of ASME Turbo Expo 2008, Power for Land, Sea and Air, Berlin Germany, Paper GT2010 51073
  • 17. Siewert C., Stuer H. ¨ , 2010, Forced response analysis of mistuned turbine bladings, Proceedings of ASME Turbo Expo 2010, Power for Land, Sea and Air, Glasgow UK, Paper GT2010-23782
  • 18. Szwedowicz J., Secall-Wimmel T., Dnck-Kerst P., 2008, Damping performance of axial turbine stages with loosely assembled friction bolts, the non-linear dynamic assessment, Journal of Engineering for Gas Turbines and Power, 130, 3, 1-14
  • 19. Weiwei G., Zili X., 2010, 3D numerical friction contact model and its application to nonlinear blade damping, Proceedings of ASME Turbo Expo 2010, Power for Land, Sea and Air, Glasgow UK, Paper GT2010-22292
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c028078-eeea-45e8-88e6-f0459784db77
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.