PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An original technique for modeling of anisotropic viscoelasticity of orthotropic materials in finite element codes applied to the mechanics of plates and shells

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an original technique for the numerical modeling of temperature dependent anisotropic viscoelastic properties in finite element codes. The study relates to the use of ANSYS Mechanical Student Products 17.2 code, but also is applicable to the other structural finite element codes. The solved one- and two-dimensional problems illustrate a possibility of an adaptation of the proposed combined-material model to the solution of model problems with a sufficient accuracy in comparison with the developed analytical solutions. An estimation of the performance of the technique shows its applicability to solution of the contact problems of orthotropic viscoelasticity of thin shells including multilayered options. The performed practical application of the method to the contact problem of cylindrical shell prove this point.
Rocznik
Strony
389--413
Opis fizyczny
Bibliogr. 43 poz., il. (w tym kolor.), rys., wykr.
Twórcy
  • Dynamic and Strength of Machines Department, National Technical University, Kharkiv Polytechnic Institute, Kyrpychova str. 2, 61002, Kharkiv, Ukraine
Bibliografia
  • [1] Peters, S. T.: Handbook of composites. Second edition, Champan & Hall, 1998.
  • [2] Ferry, J. D.: Viscoelastic properties of polymers. Third edition, John Wiley & Sons, 1980.
  • [3] Christensen, R. M.: Theory of viscoelasticity. An introduction, Academic Press, 2006. doi:10.2307/23499350.
  • [4] Roylance, D.: Engineering Viscoelasticity, Massachusetts Institute of Technology, Cambridge, 2001.
  • [5] ANSYS Mechanical APDL theory reference, ANSYS Inc, 2015. http://148.204.81.206/Ansys/150/ANSYS Mechanical APDL Theory Reference.pdf
  • [6] Abaqus theory manual, Dassault Systems, 2010. http://abaqusdoc.ucalgary.ca/books/stm/default.htm
  • [7] Shu, L. S. and Onat, E. T.: On anisotropic linear viscoelastic solids, Proc. Fourth Symp. Nav. Struct. Mech., Pergamon Press, London, 203-215, 1967.
  • [8] Taylor, Z. A., Comas, O., Cheng, M, Passenger, J., Hawkes, DJ., Atkinson, D. et al.: On modelling of anisotropic viscoelasticity for soft tissue simulation: Numerical solution and GPU execution, Med. Image Anal., 13, 234-244, 2009. doi:10.1016/j.media.2008.10.001.
  • [9] Nedjar, B.: An anisotropic viscoelastic fibre-matrix model at finite strains: Continuum formulation and computational aspects, Comput Methods Appl. Mech. Eng., 196, 1745-1756, 2007. doi:10.1016/j.cma.2006.09.009.
  • [10] Lubarda, V. and Asaro, R.: Viscoelastic response of anisotropic biological membranes. Part II: Constitutive models, Theor. Appl. Mech., 41, 213-231, 2014. doi:10.2298/TAM1403213L.
  • [11] Santos, J. E., Carcione, J. M., and Picotti, S.:. Viscoelastic-stiffness tensor of anisotropic media from oscillatory numerical experiments, Comput. Methods Appl. Mech. Eng., 200, 896-904, 2011. doi:10.1016/j.cma.2010.11.008.
  • [12] Bretin, E. and Wahab, A.: Some anisotropic viscoelastic Green functions, Contemp. Math, 548, 129-148, 2011.
  • [13] Hwu, C. and Chen, Y. C.: Analysis of defects in viscoelastic solids by a transformed boundary element method, Procedia Eng., 10, 3038-3043, 2011. doi:10.1016/j.proeng.2011.04.503.
  • [14] Bai, T. and Tsvankin, I.: Time-domain finite-difference modeling for attenuative anisotropic media, Geophysics, 81, 163-176, 2016. doi:10.1190/geo2015-0424.1.
  • [15] Lvov, G. I. and Martynenko, V. G.: Contact problem of anisotropic viscoelasticity of two cylindrical shells, in: eds. E. Barkanov, M. Mihovski, V. Sergienko., Innov. Solut. Repair Gas Oil Pipelines, Bulgarian Society for Non-destructive Testing Publishers, 159-170, 2016.
  • [16] Lvov, G. I. and Martynenko, V.G. : Development of an analytical model of a repair bandage of a pipeline, 164, 128-133, 2015.
  • [17] Poon, H. and Ahmad, M. F.: A finite element constitutive update scheme for anisotropic, viscoelastic solids exhibiting non-linearity of the Schapery type, Int. J. Numer. Methods Eng., 46, 2027-2041, 1999. doi:10.1002/(SICI)1097-0207(19991230)46:12<2027::AID-NME575>3.0.CO;2-5.
  • [18] Schapery, R. A.: On the characterization of nonlinear viscoelastic materials, Polym. Eng. Sci., 9, 1969.
  • [19] Gerngross T., Pellegrino S.: Modelling of Anisotropic Viscoelastic Behaviour in Super-Pressure Balloons. 48th AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., 2007, 1-15. doi:10.2514/6.2007-1808.
  • [20] Rand, J. L., Grant, D. and Strganac, T.: The nonlinear biaxial characterization of balloon film, 34th Aerosp. Sci. Meet. Exhib., American Institute of Aeronautics and Astronautics, Reston, Virigina, 1996. doi:10.2514/6.1996-574.
  • [21] Rand, J. L. and Sterling, W. J.: A constitutive equation for stratospheric balloon materials, Adv. Sp. Res., 37, 2087-2091, 2006. doi:10.1016/j.asr.2005.03.046.
  • [22] Staub, S., Andra, H., Kabel, M. and Zangmeister, T.: Multi-scale simulation of viscoelastic fiber-reinforced composites, Tech. Mech., 32, 70-83, 2012.
  • [23] Cavallini, F., Seriani, G.: Symbolic computations in viscoelasticity and anisotropic elasticity, 8th Int. Math. Symp., 2006.
  • [24] Liefeith, D. and Kolling S.: An anisotropic material model for finite rubber viscoelasticity, LS-DYNA Adwenderforum, Frankenthal, 25-54, 2007.
  • [25] ANSYS Mechanical APDL Introductory Tutorial, ANSYS Inc, 2013. http://148.204.81.206/Ansys/150/ANSYS Mechanical APDL Introductory Tutorials. pdf
  • [26] Adamov, A. A., Matveenko, V. P., Trufanov, N. A., and Shardakov, I. N.: Methods of applied viscoelasticity, UrO RAN, Ekaterinburg, 2003.
  • [27] Shinozuka, M.: Thermorheologically simple viscoelastic materials, AIAA J., 3, 375-377, 1965. doi:10.2514/3.2870.
  • [28] ANSYS Mechanical APDL Material Reference, ANSYS Inc, 2013. http://148.204.81.206/Ansys/150/APDL Material Reference.pdf
  • [29] ANSYS Student Products, ANSYS Inc, 2016. http://www.ansys.com/Products/Academic/ANSYS-Student
  • [30] Zhao, Y.: Applied Maple for Engineers and Scientists, 1996.
  • [31] Nettles, A. T.: tBasic mechanics of laminated composite plates, NASA Ref. Publication, 107, 1994.
  • [32] Timoshenko S, Goodier, J. N.: Theory of elasticity, J. Elast., 49, 1986. doi:10.1007/BF00046464.
  • [33] ANSYS Mechanical APDL Command Reference, ANSYS Inc, 2013. http://148.204.81.206/Ansys/150/ANSYS Mechanical APDL Command Reference. pdf
  • [34] A36 steel, 2016. https://en.wikipedia.org/wiki/A36 steel
  • [35] Menchawi, M. and Almgren, L.: Modeling of fiberglass reinforced epoxy composites in LS-DYNA, 2014.
  • [36] Onuoha, F. N. and Ohanuzue, C. B. C.: Mechanical Properties and Modeling of Fibreglass-reinforeced Epoxy Resin Wastes-filled Polypropylene, 1-8, 2014.
  • [37] Ghani, M. A. A., Salleh, Z., Hyie, K. M., Berhan, M. N., Taib, Y. M. D., and Bakri, M. A. I.: Mechanical properties of kenaf/fiberglass polyester hybrid composite, Procedia Eng., 41, 1654-1659, 2012. doi:10.1016/j.proeng.2012.07.364.
  • [38] Belaid, S., Chabira, S. F., Balland, P., Sebaa, M., and Belhouideg, S.: Thermal aging effect on the mechanical properties of polyester fiberglass composites, 6, 2795-2803, 2015.
  • [39] Aramide, F. O., Atanda, P. O. and Olorunniwo, O. O.: Mechanical properties of a polyester fibre glass composite, Int. J. Compos. Mater., 2, 147-151, 2013. doi:10.5923/j.cmaterials.20120206.06.
  • [40] Aniskevich, K., Korsgaard, J., M almeisters, A. and Jansons, J.: Creep prediction of a layered fiberglass plastic, Mech. Compos. Mater., 34, 213-222, 1998.
  • [41] Kohl, J. G., Bierwisch, N., Ngo, T. T., Favaro, G., Renget, E. and Schwarzer, N.: Determining the viscoelastic behavior of polyester fiberglass composite by continuous micro-indentation and friction properties, Wear, 63-67, 2016. doi:10.1016/j.wear.2016.01.005.
  • [42] ANSYS Mechanical APDL Performance Guide, ANSYS Inc, 2013.
  • [43] Intel Xeon Processor E5-2620 v4 (20M Cache, 2.10 GHz), Intel, 2016. http://ark.intel.com/products/92986/Intel-Xeon-Processor-E5-2620-v4-20M-Cache-2_10-GHz
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8c010e1b-948e-4821-864c-d170915071c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.