PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Research on resilience model of UAV swarm based on complex network dynamics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unmanned Aerial Vehicle (UAV) swarms are utilized in various missions and operated within an open environment that is prone to disruptions. The resilience of UAV swarms, an important requirement, mainly revolves around ensuring stable and uninterrupted operations. Malicious attacks can implement the adverse impacts of potential threats through swarm communication links. In this context, the SIS (Susceptible → Infected → Susceptible) method is suitable for describing the information transmission within UAV swarms. An enhanced resilience model of the UAV swarm is proposed in this study, which incorporates the factors of self-dynamics, dynamics of topology, dynamics of information transmission, and SIS into the complex network model. Self-dynamics refer to the internal dynamics of the drones. In this paper, dynamics of topology consist of three factors: the varying distance between drones, the incoming degrees of each drone, and the number of communication types between drones. Lastly, dynamics of information transmission are characterized by SIS. The model proposed in this paper has the capability to effectively capture changes in the network topology as well as the dynamics of the system, which are significant contributors to the loss of resilience. And then, the average number of susceptible drones is utilized as the metric to evaluate the resilience of the swarm. Furthermore, an experiment is conducted where a UAV swarm successfully carries out a surveillance mission to demonstrate the advantages of our proposed method. The proposed model not only enables the support of mission planning but also facilitates the design enhancements of UAV swarms.
Słowa kluczowe
Rocznik
Strony
art. no. 173125
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • School of systems science and engineering, Sun Yat-sen University, China
autor
  • School of systems science and engineering, Sun Yat-sen University, China
  • School of systems science and engineering, Sun Yat-sen University, China
Bibliografia
  • 1. Bai A., Luo Y., Zhang H., Li Z., L 2‐gain robust trajectory tracking control for quadrotor UAV with unknown disturbance. Asian Journal of Control;24(2022):3043-3055. https://doi.org/10.1002/asjc.2711.
  • 2. Bai C., Yan P., Yu X., Guo J., Learning-based resilience guarantee for multi-UAV collaborative QoS management. Pattern Recognition;122(2022)108166. https://doi.org/10.1016/j.patcog.2021.108166.
  • 3. Bai G., Li Y., Fang Y., Zhang Y-A., Tao J., Network approach for resilience evaluation of a UAV swarm by considering communication limits. Reliability Engineering & System Safety;193(2020)106602. https://doi.org/10.1016/j.ress.2019.106602.
  • 4. Barabási A-L., Albert RJs., Emergence of scaling in random. Networks.science;286(1999)509-512. https://doi.org/10.1126/science.286.5439.509.
  • 5. Barabási A-L., Albert R., Jeong HJPASM., Applications i., Mean-field theory for scale-free random networks. Physica A: Statistical Mechanics and its Applications;272(1999) 173-187. https://doi.org/10.1016/S0378-4371(99)00291-5.
  • 6. Barzel B., Barabási A., Universality in network dynamics. Nature Physics;9(2013)673-681. https://doi.org/10.1038/nphys2741.
  • 7. Bossens DM., Ramchurn S., Tarapore DJCRR., Resilient robot teams: a review integrating decentralised control, change-detection, and learning. Current Robotics Reports;3(2022)85-95. https://doi.org/10.1007/s43154-022-00079-4.
  • 8. Chebbi J., Briere Y., Robust active disturbance rejection control for systems with internal uncertainties: Multirotor UAV application. Journal of Field Robotics;39(2022):426-456. https://doi.org/10.1002/rob.22058.
  • 9. Chen X., Tang J., Lao SJAS., Review of unmanned aerial vehicle swarm communication architectures and routing protocols. Applied Sciences;10(2020)3661. https://doi.org/10.3390/app10103661.
  • 10. Cohen R., Erez K., Ben-Avraham D., Havlin S., Resilience of the internet to random breakdowns. Physical review letters;85(2000)4626. https://doi.org/10.1103/PhysRevLett.85.4626.
  • 11. da Fontoura Costa L., Reinforcing the resilience of complex networks. Physical Review E;69(2004)066127. https://doi.org/10.1103/PhysRevE.69.066127.
  • 12. Dui H., Zhang C., Bai G., Chen L., Mission reliability modeling of UAV swarm and its structure optimization based on importance measure. Reliability Engineering & System Safety;215(2021)107879. https://doi.org/10.1016/j.ress.2021.107879.
  • 13. Gao J., Barzel B., Barabási A-L. Universal resilience patterns in complex networks. Nature;530(2016) 307-312. https://doi.org/10.1038/nature16948.
  • 14. Harush U., Barzel B., Dynamic patterns of information flow in complex networks. Nature communications;8(2017):1-11. https://doi.org/10.1038/s41467-017-01916-3.
  • 15. Hua Y., Dong X., Li Q., Ren Z., Distributed adaptive formation tracking for heterogeneous multiagent systems with multiple nonidentical leaders and without well‐informed follower. International Journal of Robust and Nonlinear Control;30(2020)2131-2151. https://doi.org/10.1002/rnc.4891.
  • 16. Kephart JO., White SR.,Directed-graph epidemiological models of computer viruses. In: Computation: the micro and the macro view. Computation: the micro and the macro view;(1992)71-102. https://doi.org/10.1142/9789812812438_0004.
  • 17. Kopeikin A., Clare A., Toupet O., How J., Cummings M., Flight testing a heterogeneous multi-UAV system with human supervision. AIAA Guidance, Navigation, and Control Conference;(2012)4825. https://doi.org/10.2514/6.2012-4825.
  • 18. Li X., Chen C., Lyu Y., Xie KJIJoR., Control N., Event‐based resilience to DoS attacks on communication for consensus of networked Lagrangian systems. International Journal of Robust and Nonlinear Control;31(2021)1834-1850. https://doi.org/10.1002/rnc.5013.
  • 19. Li Y., St-Hilaire M., Kunz T., Improving routing in networks of UAVs via scoped flooding and mobility prediction. 2012 IFIP Wireless Days. IEEE;(2012)1-6. https://doi.org/10.1109/WD.2012.6402827.
  • 20. Ma X., Dong W., Jin M., et al., Consensus tracking control for uncertain non‐strict feedback multi‐agent system under cyber attack via resilient neuroadaptive approach. International Journal of Robust and Nonlinear Control;32(2022) 4251-4280. https://doi.org/10.1002/rnc.6035.
  • 21. Mukherjee A., Misra S., Chandra VSP., Obaidat MS., Resource-optimized multiarmed bandit-based offload path selection in edge UAV swarms. IEEE Internet of Things Journal;6(2018)4889-4896. https://doi.org/10.1109/JIOT.2018.2879459.
  • 22. Ordoukhanian E., Madni AM., Introducing resilience into multi-UAV system-of-systems network. In: Disciplinary Convergence in Systems Engineering Research. Disciplinary Convergence in Systems Engineering Research. Springer International Publishing;(2018)27-40. https://doi.org/10.1109/ISSE46696.2019.8984509.
  • 23. Ordoukhanian E., Madni AM., Model-based approach to engineering resilience in multi-UAV systems. Systems;7(2019)11. https://doi.org/10.3390/systems7010011.
  • 24. Ordoukhanian E., Madni AM., Resilient multi-UAV operation: key concepts and challenges. 54th AIAA Aerospace Sciences Meeting;(2016)0475. https://doi.org/10.2514/6.2016-0475.
  • 25. Phadke A., Medrano FAJD., Towards Resilient UAV Swarms—A Breakdown of Resiliency Requirements in UAV Swarms. Drones;6(2022)340. https://doi.org/10.3390/drones6110340.
  • 26. Ren Y., Zhang K., Jiang B., Cheng W., Ding Y., Distributed fault‐tolerant time‐varying formation control of heterogeneous multi‐agent systems. International Journal of Robust and Nonlinear Control. International Journal of Robust and Nonlinear Control;32(2022)2864-2882. https://doi.org/10.1002/rnc.5870.
  • 27. Sadrollah GP., Barca JC., Khan AI., Eliasson J., Senthooran I., A distributed framework for supporting 3D swarming applications. 2014 International Conference on Computer and Information Sciences (ICCOINS);IEEE, (2014)1-5. https://doi.org/10.1109/ICCOINS.2014.6868347.
  • 28. Tran HT., A complex networks approach to designing resilient system-of-systems. Georgia Institute of Technology;2015. http://hdl.handle.net/1853/54384.
  • 29. Tran HT., Domerant JC., Mavris DNJPCS., A Network-based Cost Comparison of Resilient and Robust System-of-Systems. Procedia Computer Science; 95 (2016)126-133. https://doi.org/10.1016/j.procs.2016.09.302.
  • 30. Tran HT., Domerçant JC., Mavris DNJTJoDM., Simulation., Evaluatingthe agility of adaptive command and control networks from a cyber complex adaptive systems perspective. The Journal of Defense Modeling and Simulation;12 (2015)405-422. https://doi.org/10.1177/1548512915592517.
  • 31. Vachtsevanos G., Lee B., Oh S., Balchanos MJJoI., Systems R. Resilient design and operation of cyber physical systems with emphasis on unmanned autonomous systems. Journal of Intelligent & Robotic Systems;91(2018)59-83. https://doi.org/10.1007/s10846-018-0881-x.
  • 32. Valavanis KP., Vachtsevanos GJ., Handbook of unmanned aerial vehicles. Dordrecht: Springer Netherlands;1(2015). https://doi.org/10.1007/978-90-481-9707-1.
  • 33. Wierman JC., Marchette DJ., Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction. Computational statistics & data analysis; 45(2004)3-23. https://doi.org/10.1016/S0167-9473(03)00113-0.
  • 34. Xu B., Bai G., Fang Y., Tao J., Failure analysis of unmanned autonomous swarm considering cascading effects. Journal of Systems Engineering and Electronics;33(2022):759-770. https://doi.org/10.23919/JSEE.2022.000069.
  • 35. Xu B., Liu T., Bai G., Tao J., Zhang Y-a., Fang Y., A multistate network approach for reliability evaluation of unmanned swarms by considering information exchange capacity. Reliability Engineering& System Safety;219(2022)108221. https://doi.org/10.1016/j.ress.2021.108221.
  • 36. Zhen Z., Chen Y., Wen L., Han B., An intelligent cooperative mission planning scheme of UAV swarm in uncertain dynamic environment. Aerospace Science and Technology;100(2020)105826. https://doi.org/10.1016/j.ast.2020.105826.
  • 37. Zhu Q., Yang X., Ren JJCiNS, Simulation N., Modeling and analysis of the spread of computer virus. Communications in Nonlinear Science and Numerical Simulation;17(2012)5117-5124. https://doi.org/10.1016/j.cnsns.2012.05.030.
  • 38. Zou Y., Meng Z., Distributed hierarchical control for multiple vertical takeoff and landing UAVs with a distance‐based network topology. International Journal of Robust and Nonlinear Control;29(2019)2573-2588. https://doi.org/10.1002/rnc.4513.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bffad78-ee7f-480e-b55f-b5b6456ac1f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.