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Abstract. For single-server queueing systems with non-homogeneous customers

having some random space requirements we compare processor-sharing and FIFO

disciplines and investigate their in�uence on the total sum of space requirements

characteristics (when this sum is not limited, i.e. V = ∞) and customers loss prob-

ability (when this sum is limeted, i.e. V < ∞), using analytical modeling and

simulation.

1. Introduction

In the present work we investigate single-server queueing systems with non-

homogeneous customers. This means that

1) each customer is characterized by some non-negative random capacity ζ;

2) customer's length ξ and his capacity ζ are generally dependent.

Note that we shall use the notion �customer length� instead of �service

time�. The di�erence between these notions is essential for processor sharing

systems. The amount of work necessary for customer's service is called the

customer length [5], i.e. the customer service time under condition that there

are no other customers on service during this time period. Analogously, the

residual length of the customer is referrred as his residual service time after

some time instant under the same condition.
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The total sum σ(t) of capacities of all the customers present in the system

at arbitrary time t may be limited by some constant value V (0 < V ≤ ∞)

that is called the capacity of the system.

Such systems are used to model and solve various problems occurring in the

design of computer and communicating nets and systems. It is clear that they

di�er from usual classical queueing systems in the case V <∞. For example,

we can analyze the non-classical systemM/G/1/(∞, V ) with limited capacity

that di�ers from the classical system M/G/1/∞.

Let

F (x, t) = P{ζ < x, ξ < t}

be the distribution function of the random vector (ζ, ξ). Then

L(x) = P{ζ < x} = F (x,∞) and B(t) = P{ξ < t} = F (∞, t)

are the distribution functions of customer's capacity and length, respectively.

The part of system capacity is occupied by a customer at the epoch he arrives

and is released entirely at the epoch he completes service. The process σ(t) is
called the total customers capacity.

Total capacity limitation (in the case V <∞) leads to losses of customers.

A customer arriving at the epoch τ and having capacity x will be admitted to

the system if σ(τ − 0) + x ≤ V . Otherwise (σ(τ − 0) + x > V ), the customer

will be lost.

Various single-server queueing systems with non-homogeneous (in the sense

of assumptions 1, 2) customers were analyzed in [1�4].

The purpose of this paper is to compare processor sharing and FIFO or

other conservative, not depending on customers capacity disciplines and in-

vestigate their in�uence on the stationary �rst moment of the total sum of

customers capacities (when V = ∞) and customers loss probability (when

V <∞). To realize this purpose we use analytical modeling and simulation.

2. The case of unlimited system capacity

Suppose that customers intrance �ow is Poisson. Let a be an arrival rate of

entrance �ow of customers. Assume that V =∞. Then we have the classical

M/G/1/∞ andM/G/1/∞−EPS (processor sharing) systems without losses

of customers. For such a system we can obtain the stationary characteristics

of total customers capacity (see e.g. [2, 3]).

We shall use the following notation. Denote by

α(s, q) =
∫ ∞

0

∫ ∞

0
e−sx−qtdF (x, t)
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the double Laplace-Stieltjes transfom (LST) of the function F (x, t). Let

ϕ(s) = α(s, 0) and β(q) = α(0, q) be the LST of the functions L(x) and

B(t), respectively. Let D(x) = P{σ < x} be the distribution function

of stationary total customers capacity σ. Let ϕi = Eζi, βi = Eξi and

αij = E(ζiξj) be the ith moments of the random variables ζ, ξ and the mixed

(i+ j)th moment of the random variables ζ and ξ, respectively. i, j = 1, 2, . . . ,
ρ = aβ1 < 1. Denote by δ(s) =

∫∞
0 e−sxdD(x) the LST of the func-

tion D(x) and by δi = Eσi the ith moment of total customers capacity σ,
i = 1, 2, . . . .

Then for the system M/G/1/∞ (or for the discipline FIFO) we have [4]:

δFIFO1 = EσFIFO = aα11 +
a2β2ϕ1

2(1− ρ)
. (1)

For the system M/G/1/∞− EPS (or for the discipline EPS) we get [2]:

δEPS1 = EσEPS =
aα11

1− ρ
. (2)

From the simple relations (1) and (2), we obtain that δFIFO1 < δEPS1 if

the inequality 2β1α11 > β2ϕ1 takes place. For example, if the random vari-

ables ζ and ξ are independent, i.e. α11 = ϕ1β1, the last inequality takes

the form 2β2
1 > β2. Note that for exponential distributed customer length

we have 2β2
1 = β2. So, in this case for independent ζ and ξ we obtain that

δFIFO1 = δEPS1 . If the customer length distribution is characterized by vari-

ation which is less than for exponential one, we always have δFIFO1 < δEPS1 .

Evidently, this will be true for the case of positive correlated ζ and ξ (when

α11 > ϕ1β1).

For many real computer systems (for example, for communicating centers)

the customer length can be de�ned by the relation ξ = cζ + ξ1, where c ≥ 0
and the random variables ζ and ξ1 are independent.

Denote by κi the ith moment of the random variable ξ1, i = 1, 2, . . . . Then
the �rst moments of the random variables σFIFO and σEPS can be calculated

from relations (1) and (2), respectively, where [3]

α11 = ϕ1κ1 + cϕ2, β1 = cϕ1 + κ1, β2 = c2ϕ2 + 2cϕ1κ1 + κ2.

In this case we have that δFIFO1 < δEPS1 if the following inequality takes place:

c2ϕ1ϕ2 + 2κ1(ϕ1κ1 + cϕ2) > ϕ1κ2. (3)

In particular, if a customer length is proportional to his capacity, i.e. κ1 ≡ 0,
κ2 ≡ 0, we have from (3) that c2ϕ1ϕ2 > 0. Evidently, this inequality is always
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true. For example, if we assume additionally that the customer length ζ has

an exponential distribution with parameter f , we obtain:

δFIFO1 =
1
f
· ρ(2− ρ)

1− ρ
, δEPS1 =

1
f
· 2ρ
1− ρ

.

Intuitively this is clear, because in the case of EPS discipline short (or

having small capacity) customers are for a small time in the system, while

FIFO service organization does not depend on the customer capacity.

3. The case of limited system capacity

In this case, it is interesting to compare loss characteristics for EPS and FIFO

disciplines.

If customer's length does not depend on his capacity and has an exponential

distribution with parameter f , we obtain [6] for systems M/M/1/(∞, V ) and
M/G/1/(∞, V )−EPS with the same ρ = aβ1 that the loss probability P has

the form:

PFIFO = PEPS =


1− ρ

e(1−ρ)fV − ρ
if ρ �= 1,

(1 + fV )−1 if ρ = 1.

Note that β1 = 1/µ for the systemM/M/1/(∞, V ), where µ is the param-

eter of customer length.

Later on, we shall compare loss probabilities P and probabilities Q that

unit of customer's capacity will be lost (see [7]) for cases of FIFO and EPS

disciplines. It is clear (in this case) that probability Q is also the same for both

systems under consideration. This fact can be con�rmed by results of simu-

lation (see Appendix, tables 1 and 2, where f = 1, µ = 1). In our notation,

we shall use the low indexes �an� or �sim� to demonstrate that an apropriate

characteristic was obtained analytically or by simulation, respectively.

It can be conformed analytically and by simulation that we have the same

results for loss characteristics P and Q in the systems M/M/1/(∞, V ) and
M/G/1/(∞, V ) − EPS with the same ρ, when customer's length does not

depend on his capacity and customer's capacity has the same distribution for

both systems.
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But if customer's length depends on his capacity, then service discipline

has an in�uence on loss characteristics of the system. This in�uence depends

on the character of this dependence and the value of ρ, but is inessential

for small ρ. We demonstrate this fact in tables 3, 4, and 5 (in Appendix),

when customer's length is proportional to his capacity and the capacity has

an exponential distribution (ξ = cζ, c = 1, ϕ1 = Eζ = 1).
It is interesting to compare the last results with those for the case of non-

exponential customer volume and length distribution. We present them in

tables 6�9 for independent random variables ζ and ξ having the uniform dis-

tribution on [0; 2] (see tables 6, 7) and for the case when customer's length ξ is
proportional to his capacity ζ (having the same distribution) with coe�cient

c = 1 (see tables 8 and 9).

4. Conclusion

In this paper we have analyzed the in�uence of service discipline on the �rst

moment of total customers capacity in single-server queueing system with

unlimited system capacity and on the loss characteristics for the system with

limited total capacity. It was shown that

1) the discipline FIFO is better than EPS from the viewpoint of capacity

occupied by customers in the system and loss characteristics;

2) the loss characteristics P and Q depend on service discipline and char-

acter of dependence between customer's capacity and his length.

However, the last dependence is inessential for rather small system capac-

ities and small ρ; more precisely, in this case the in�uence of ζ and ξ depen-

dence is inessential for loss characteristics calculation. Therefore, in practice

we often need not to pay attention on this dependence and can use analytical

methods to calculate the loss probability for queueing systems with customer

length not depending on his capacity.
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Appendix

Table 1: Probabilities Q for ρ = 0.2

V QFIFO
sim QESP

sim

0.0 1.0000 1.0000

1.0 0.7526 0.7526

2.0 0.4454 0.4451

2.5 0.3290 0.3289

3.0 0.2402 0.2401

4.0 0.1230 0.1231

5.0 0.0610 0.0607

6.0 0.0293 0.0295

8.0 0.0067 0.0069

10.0 0.0014 0.0014

12.0 0.0003 0.0003
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Table 2: Probabilities Q for ρ = 0.8

V QFIFO
sim QEPS

sim

0.0 1.0000 1.0000

2.0 0.5774 0.5771

4.0 0.3083 0.3077

6.0 0.1776 0.1772

8.0 0.1085 0.1085

10.0 0.0688 0.0678

15.0 0.0233 0.0232

20.0 0.0085 0.0085

25.0 0.0031 0.0031

30.0 0.0012 0.0011

35.0 0.0004 0.0004

Table 3: Probabilities P and Q for ρ = 0.2

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

1.0 0.3846 0.7454 0.3847 0.7454

2.0 0.1711 0.4445 0.1718 0.4455

3.0 0.0850 0.2531 0.0866 0.2549

4.0 0.0446 0.1419 0.0467 0.1448

5.0 0.0240 0.0790 0.0260 0.0824

6.0 0.0129 0.0435 0.0147 0.0469

8.0 0.0038 0.0130 0.0048 0.0153

10.0 0.0011 0.0038 0.0016 0.0051

12.0 0.0003 0.0011 0.0005 0.0017

15.0 0.0001 0.0002 0.0001 0.0003
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Table 4: Probabilities P and Q for ρ = 0.8

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

2.0 0.2570 0.5371 0.2641 0.5424

4.0 0.1272 0.2851 0.1475 0.3111

6.0 0.0715 0.1642 0.0964 0.2036

8.0 0.0429 0.0997 0.0676 0.1426

10.0 0.0267 0.0624 0.0493 0.1042

15.0 0.0090 0.0212 0.0248 0.0525

20.0 0.0032 0.0076 0.0135 0.0285

25.0 0.0012 0.0028 0.0076 0.0160

30.0 0.0004 0.0010 0.0044 0.0092

35.0 0.0002 0.0004 0.0025 0.0054

40.0 0.0001 0.0002 0.0015 0.0031

50.0 0.0000 0.0000 0.0005 0.0011

Table 5: Probabilities P and Q for ρ = 1.0

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

2.0 0.2803 0.5616 0.2902 0.5687

4.0 0.1550 0.3303 0.1819 0.3624

5.0 0.1229 0.2654 0.1539 0.3070

10.0 0.0551 0.1220 0.0870 0.1736

15.0 0.0344 0.0764 0.0606 0.1212

20.0 0.0256 0.0572 0.0465 0.0929

30.0 0.0132 0.0290 0.0317 0.0635

35.0 0.0105 0.0246 0.0248 0.0548

40.0 0.0076 0.0217 0.0241 0.0481

50.0 0.0070 0.0164 0.0195 0.0389

60.0 0.0065 0.0144 0.0163 0.0325

70.0 0.0056 0.0120 0.0140 0.0279

80.0 0.0049 0.0104 0.0122 0.0250
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Table 6: Probabilities P and Q for ρ = 0, 2 when ζ and ξ are independent

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

0.5 0.7565 0.9397 0.7565 0.9397

1.0 0.5240 0.7658 0.5241 0.7658

1.5 0.3031 0.4904 0.3039 0.4908

2.0 0.0923 0.1226 0.0938 0.1240

2.5 0.0577 0.0846 0.0603 0.0873

3.0 0.0314 0.0492 0.0344 0.0528

4.0 0.0051 0.0076 0.0079 0.0113

5.0 0.0012 0.0018 0.0023 0.0034

6.0 0.0002 0.0003 0.0006 0.0009

7.0 0.0000 0.0001 0.0002 0.0002

Table 7: Probabilities P and Q for ρ = 0, 8 when ζ and ξ are independent

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

1.0 0.5854 0.8065 0.5878 0.8075

2.0 0.3008 0.3944 0.3111 0.4016

3.0 0.1857 0.2622 0.2083 0.2854

4.0 0.1153 0.1605 0.1435 0.1936

5.0 0.0759 0.1068 0.1044 0.1418

6.0 0.0515 0.0723 0.0779 0.1057

8.0 0.0250 0.0352 0.0455 0.0618

10.0 0.0127 0.0178 0.0280 0.0380

15.0 0.0024 0.0034 0.0090 0.0122

20.0 0.0005 0.0007 0.0030 0.0040

25.0 0.0001 0.0001 0.0010 0.0014

30.0 0.0000 0.0000 0.0003 0.0004

35.0 0.0001 0.0001
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Table 8: Probabilities P and Q for ρ = 0, 2 when ξ is proportional to ζ

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

1.0 0.5158 0.7597 0.5158 0.7596

2.0 0.1141 0.1423 0.1150 0.1431

3.0 0.0438 0.0686 0.0484 0.0740

4.0 0.0079 0.0112 0.0138 0.0192

5.0 0.0020 0.0031 0.0049 0.0072

6.0 0.0003 0.0005 0.0015 0.0022

7.0 0.0001 0.0001 0.0005 0.0007

8.0 0.0000 0.0000 0.0002 0.0002

9.0 0.0001 0.0001

Table 9: Probabilities P and Q for ρ = 0, 8 when ξ is proportional to ζ

V PFIFO
sim QFIFO

sim PEPS
an QEPS

sim

0.0 1.0000 1.0000 1.0000 1.0000

0.5 0.7582 0.9400 0.7582 0.9400

1.0 0.5570 0.7855 0.5573 0.7857

2.0 0.3179 0.3963 0.3252 0.4023

3.0 0.1832 0.2621 0.2142 0.2956

4.0 0.1109 0.1536 0.1558 0.2084

5.0 0.0703 0.0997 0.1168 0.1578

6.0 0.0464 0.0658 0.0901 0.1221

8.0 0.0219 0.0310 0.0569 0.0770

10.0 0.0110 0.0155 0.0376 0.0508

15.0 0.0021 0.0030 0.0148 0.0200

20.0 0.0004 0.0006 0.0062 0.0084

25.0 0.0001 0.0001 0.0027 0.0036

30.0 0.0000 0.0000 0.0011 0.0015

35.0 0.0005 0.0007

40.0 0.0002 0.0003

45.0 0.0001 0.0001


