PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machining Investigations of Squeeze Cast TiB2/Al 7075 Composites through EDM: Regression Modelling and Weighted Principal Component Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
2 wt.% TiB2 (mean particle size: 400 nm) reinforced Al 7075 metal matrix composites (MMCs) fabricated through mechanical stirring and ultrasonic agitation integrated squeeze casting process were subjected to electrical discharge machining (EDM) after determining the physical and mechanical properties. EDM was conducted with Cu electrode tools to investigate influence of machining factors, i.e. peak current (IP), pulse on time (TON) and gap voltage (VG) on the tool wear rate (TWR), material removal rate (MRR) and average surface roughness (ASR) of the machined surfaces. All the three responses increased on increasing IP and TON, but reduced on increasing VG. The machined surfaces were studied through scanning electron microscope (SEM). Significance of the EDM parameters on the individual responses were studied using analysis of variance (ANOVA) and regression models for the responses were developed using response surface method (RSM). The responses under consideration were optimized simultaneously using Taguchi embedded weighted principal component analysis (WPCA), which resulted the parametric combination of 4A (current), 100 μs (pulse duration) and 75V (voltage) was the optimal setting for the multi-criteria decision problem. Finally, the result of optimization was validated by conducting some confirmatory experiments.
Twórcy
  • KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
  • KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
  • KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
  • KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
autor
  • KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
  • KIIT Deemed to be University, School of Mechanical Engineering, Bhubaneswar-751024, India
Bibliografia
  • [1] M. Sambathkumar, P. Navaneethakrishnan, K.S.K. Sasikumar, R. Gukendran, K. Ponappa, Investigation of mechanical and corrosion properties of Al 7075/garnet metal matrix composites by two-stage stir casting process, Archives of Metallurgy and Materials 66 (4), 1123-1129 (2021).
  • [2] D. Paulraj, P.D. Jeyakumar, G. Rajamurugan, P. Krishnasamy, Influence of nano TiO2/micro (SiC/B4C) reinforcement on the mechanical, wear and corrosion behaviour of A356 metal matrix composite, Archives of Metallurgy and Materials 66 (3), 871-880 (2021).
  • [3] B.P. Sahoo, D. Das, Investigation on reinforcement incorporation factor and microstructure of Al 7075/submicron-TiB2 metal matrix composites processed through a modified liquid metallurgy technique, Experimental Techniques 45 (2), 179-193 (2021).
  • [4] B.P. Sahoo, D. Das, Critical review on liquid state processing of aluminium based metal matrix nano-composites, Materials Today: Proceedings 19, 493-500 (2019).
  • [5] B.P. Sahoo, D. Das, A.K. Chaubey, Strengthening mechanisms and modelling of mechanical properties of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites, Materials Science and Engineering: A 825, 141873 (2021).
  • [6] F. Chen, F. Mao, Z. Chen, J. Han, G. Yan, T. Wang, Z. Cao, Application of synchrotron radiation X-ray computed tomography to investigate the agglomerating behaviour of TiB2 particles in aluminum, Journal of Alloys and Compounds 622, 831-836 (2015).
  • [7] G.S. Gan, B. Yang, Q. Gao, Y. Wu, M.B. Yang, Microstructure and viscosity of particles reinforced 7075 Al matrix composites, Materials Transactions 57 (8), 1296-1299 (2016).
  • [8] V. Anandakrishnan, A. Mahamani, Investigations of flank wear, cutting force, and surface roughness in the machining of Al-6061-TiB2 in situ metal matrix composites produced by fluxassisted synthesis, International Journal of Advanced Manufacturing Technology 55 (1), 65-73 (2011).
  • [9] R. Jiang, C.H.E.N. Xinfa, G.E. Renwei, W.A.N.G. Wenhu, S.O.N.G. Guodong, Influence of TiB2 particles on machinability and machining parameter optimization of TiB2/AlMMCs, Chinese Journal of Aeronautics 31 (1), 187-196 (2018).
  • [10] S. Gopalakannan & T. Senthilvelan, EDM of cast Al/SiC metal matrix nanocomposites by applying response surface method, International Journal of Advanced Manufacturing Technology 67 (1-4), 485-493 (2013).
  • [11] V. Dubey, A.K. Sharma, B. Singh, Optimization of machining parameters in chromium-additive mixed electrical discharge machining of the AA7075/5%B4C composite, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 236 (1), 104-113 (2021).
  • [12] H.R. Rezaei Ashtiani, F. Hojati, The influences of spark energy density on the electrical discharge machining (EDM), Advances in Materials and Processing Technologies 1-17 (2021).
  • [13] S. Ramesh, M.P. Jenarthanan, Optimizing the powder mixed EDM process of nickel based super alloy, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 235 (4), 1092-1103 (2021).
  • [14] A. Tajdeen, A. Megalingam, Optimization of output responses during EDM of AZ91 magnesium alloy using grey relational analysis and TOPSIS, Archives of Metallurgy and Materials 66 (4), 1105-1113 (2021).
  • [15] M. Rizwee, P.S. Rao, M.Y. Khan, Recent advancement in electric discharge machining of metal matrix composite materials, Materials Today: Proceedings 37, 2829-2836 (2021).
  • [16] A. Żyra, R. Bogucki, S. Skoczypiec, An influence of titanium alloy Ti10V2Fe3Al microstructure on the electro discharge process efficiency, Archives of Metallurgy and Materials 64 (3), 1005-1010 (2019).
  • [17] N.P. Hung, I.J. Yang, K.W. Leong, Electrical discharge machining of cast metal matrix composites, Journal of Materials Processing Technology 44 (3-4), 229-236 (1994).
  • [18] Y.W. Seo, D. Kim, M. Ramulu, Electrical discharge machining of functionally graded 15-35 vol.% SiCp/Al composites, Mater. Manuf. Process 21 (5), 479-487 (2006).
  • [19] G. Kucukturk, J. Joudi, R. Calin, U. Seker, G.U.R.U.N. Hakan, O.F. Ahmadinia, Experimental investigation of machining characteristics for Al2014 alloy reinforced with TiB2 composites in powder-mixed EDM, 18 th International Conference on Machine Design and Production, Turkey 1-13 (2018).
  • [20] M. Prabu, G. Ramadoss, C. Senthilkumar , S. Magibalan, P. Senthilkumar, Electric discharge machining of Al-TiB2 composites with and without graphite powder suspended dielectric, ARPN Journal of Engineering and Applied Sciences 11 (2), 1242-12449 (2016).
  • [21] D. Palanisamy, A. Devaraju, N. Manikandan, K. Balasubramanian, D. Arulkirubakaran, Experimental investigation and optimization of process parameters in EDM of aluminium metal matrix composites, Materials Today: Proceedings 22, 525-530 (2020).
  • [22] M. Hourmand, S. Farahany, A.A. Sarhan, M.Y. Noordin, Investigating the electrical discharge machining (EDM) parameter effects on Al-Mg 2 Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR-RSM approach, The International Journal of Advanced Manufacturing Technology 77 (5), 831-838 (2015).
  • [23] C. Roy, K.H. Syed, P. Kuppan, Machinablity of Al/10%SiC/2.5%TiB2 Metal Matrix Composite with Powder-mixed Electrical Discharge Machning, Procedia Technology 25, 1056-1063 (2016).
  • [24] A. Dvivedi, P. Kumar, I. Singh, Effect of edm process parameters on surface quality of Al 6063-SiCp metal matrix composite, Int. J. Mater. Prod. Technol 39 (3-4), 357-377 (2010).
  • [25] N.V. Rengasamy, M. Rajkumar, S.S. Kumaran, An analysis of mechanical properties and optimization of EDM process parameters of Al 4032 alloy reinforced with ZrB2 and TiB2 in-situ composites, Journal of Alloys and Compounds 662, 325-338 (2016).
  • [26] K.J. Seelan, R. Rajesh, R.F. Liji, Optimization of EDM Parameters Using RSM and Grey Relational Analysis for Aluminium Titanium Diboride (Al-TiB2), International Journal of Mechanical Engineering and Technology 8 (5), (2017).
  • [27] Y. Xie, X. Meng, Y. Huang, J. Li, J. Cao, Deformation-driven metallurgy of graphene nanoplatelets reinforced aluminum composite for the balance between strength and ductility. Composites Part B: Engineering 177, 107413 (2019).
  • [28] Y. Xie, Y. Huang, F. Wang, X. Meng, J. Li, Z. Dong, J. Cao, Deformation-driven metallurgy of SiC nanoparticle reinforced aluminum matrix nanocomposites. Journal of Alloys and Compounds 823, 153741 (2020).
  • [29] R.M. Tekiyeh, M. Najafi, S. Shahraki, Machinability of AA7075-T6/carbon nanotube surface composite fabricated by friction stir processing, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 233 (4), 839-8489 (2019).
  • [30] E.C. Jameson, Electrical discharge machining, Society of Manufacturing Engineers (2001).
  • [31] M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric, Influence of discharge energy on machining characteristics in EDM, Journal of Mechanical Science and Technology 26 (1), 173-179 (2012).
  • [32] T. Ikai, K. Hashigushi, Heat input for crater formation in EDM, Proceedings of the International Symposium for Electro-Machining-ISEM XI, EPFL 163-170 (1995).
  • [33] B.C. Routara, S.D. Mohanty, S. Datta, A. Bandyopadhyay, S.S. Mahapatra, Combined Quality Loss (CQL) concept in WPCA-based Taguchi philosophy for optimization of multiple surface quality characteristics of UNS C34000 brass in cylindrical grinding, International Journal of Advanced Manufacturing Technology 51 (1), 135-143 (2010).
  • [34] D. Das, P. Mishra, S. Singh, A. Chaubey, B. Routara, Machining performance of aluminium matrix composite and use of WPCA based Taguchi technique for multiple response optimization, International Journal of Industrial Engineering Computations 9 (4), 551-564 (2018).
  • [35] C.J. Tzeng, Y.H. Lin, Y.K. Yang, M.C. Jeng, Optimization of turning operations with multiple performance characteristics using the Taguchi method and grey relational analysis, Journal of Materials Processing Technology 209 (6), 2753-2759 (2009).
  • [36] D.K. Das, P.C. Mishra, A.K. Sahoo, D. Ghosh, Experimental investigation on cutting tool performance during turning AA 6063 using uncoated and multilayer coated carbide inserts, International Journal of Machining and Machinability of Materials, 17 (3-4), 277-2949 (2015).
  • [37] C.R. Kothari, Research methodology, second revised edition: Reprint, New Age International Publishers (2012).
  • [38] R. Panneerselvam, Research methodology, PHI Learning private limited, Second edition (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bfcc871-57b1-48cf-b8a9-8a64d787271a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.