PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High performance fluidized bed photoreactor for ethylene decomposition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Removal of C2H4 in the air was carried out in the continuous flow reactor with the photocatalytic bed (expanded polystyrene spheres coated by TiO2 or SiO2/TiO2) under irradiation of UV light. Continuous flow of a gas stream through the reactor was realised at the static bed and under bed fluidization. The required flow of a gas stream through the reactor for bed fluidisation was 500–700 ml/min, whereas for the static bed the flow rate of 20 ml/min was used. Fluidized bed reactor appeared to be much more efficient in ethylene removal than that with the stationary bed. It was caused by the increased speed of C2H4 mass transfer to the photocatalyst surface and better utilization of the incident UV light. In the fluidized bed reactor calculated rate of C2H4 degradation was around 10 μg/min whereas in the stationary state 1.2 μg/min only.
Rocznik
Strony
50--56
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering Szczecin, Poland
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering Szczecin, Poland
autor
  • West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Catalytic and Sorbent Materials Engineering Szczecin, Poland
Bibliografia
  • 1. Zhu, Z., Zhang, Y., Shang, Y. & Wen, Y. (2019). Electrospun Nanofibers Containing TiO2 for the Photocatalytic Degradation of Ethylene and Delaying Postharvest Ripening of Bananas. Food Bioprocess Technol. 12, 281–287. DOI: 10.1007/s11947-018-2207-1.
  • 2. de Chiara, M.L.V., Pal, S., Licciulli, A., Amodio, M.L. & Colelli, G. (2015) Photocatalytic degradation of ethylene on mesoporous TiO2/SiO2 nanocomposites: Effects on the ripening of mature green tomatoes, Biosystems Engineering 132, 61–70. DOI: 10.1016/j.biosystemseng.2015.02.008.
  • 3. Keller, N., Ducamp, M.-N., Robert, D. & Keller, V. (2013). Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation. Chem. Rev. 113, 5029–5070. DOI: 10.1021/cr900398v.23590210.
  • 4. Maneerat, C., Hayata, Y., Egashira, N., Sakamoto, K., Hamai, Z. & Kuroyanagi, M. (2003). Photocatalytic reaction of TiO2 to decompose ethylene in fruit and vegetable storage. Transactions of the ASAE 46(3), 725–730. DOI: 10.13031/2013.13574.
  • 5. Rychtowski, P., Tryba, B., Skrzypska, A. & Felczak, P. et al. (2022) Role of the Hydroxyl Groups Coordinated to TiO2 Surface on the Photocatalytic Decomposition of Ethylene at Different Ambient Conditions. Catalysts 12, 386. DOI: 10.3390/catal12040386.
  • 6. Maneerat, C., Hayata, Y. Gas-phase photocatalytic oxidation of ethylene with TiO2-coated packaging film for horticultural products. (2008). Transactions of the ASABE 51(1), 163–168. DOI: 10.3390/ma12060896.647153130889799.
  • 7. Iwanaga, M., Akimoto, Y. & Shiraishi, F. (2019) Effect of humid air on photocatalytic decomposition of ethylene by TiO2 immobilized on different supports. Eco-Engineering 31(2), 37–44. DOI: 10.11450/seitaikogaku.31.37.
  • 8. de Chiara, M.L.V., Amodio, M.L. Scura, F., Spremulli, L. & Colelli, G. (2014). Design and preliminary test of a fluidised bed photoreactor for ethylene oxidation on mesoporous mixed SiO2/TiO2 nanocomposites under UV-A illumination. J. Agric. Engin. XLV,435, 146–152. DOI: 10.4081/jae.2014.435.
  • 9. Ji, B., G. Yan, W. Zhao, X. Zhao, J. Ni,, J. Duan, Z. Chen & Z. Yang. (2020). Titanium mesh-supported TiO2 nano-film for the photocatalytic degradation of ethylene under a UV-LED. Ceramics International 46, 20830–20837. DOI: 10.1016/j.ceramint.2020.05.113.
  • 10. Hussain, M., Bensaid, S., Geobaldo, F., Saracco,, G. & Russo N. (2011). Photocatalytic Degradation of Ethylene Emitted by Fruits with TiO2 Nanoparticles. Ind. Eng. Chem. Res. 50, 2536–2543. DOI:10.1021/ie1005756.
  • 11. Park, D.-R., Zhang, J., Ikeue, K., Yamashita, H. & Anpo, M. (1999). Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered TiO2 Photocatalysts in the Presence of O2 and H2O. J. Catal. 185, 114–119. DOI: 10.1006/jcat.1999.2472.
  • 12. Hauchecorne, B., Tytgat, T., Verbruggen, S.W., Hauchecorne, D., et al. (2011). Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. Appl. Catal. B: Environ. 105(1–2), 111–116. DOI: 10.1016/j.apcatb.2011.03.041.
  • 13. Rychtowski, P., Orlikowski, J., Żołnierkiewicz, G. & Tryba, B. (2022). Mechanism of hydroxyl radicals formation on the reduced rutile. Mater. Res. Bulletin 147, 111643. DOI: 10.1016/j.materresbull.2021.111643.
  • 14. Broniarz-Press, L., Agacinski, P., Rozanski, J. (2007). Shear-thinning fluids flow in fixed and fluidised beds. Int. J. Multiph. Flow, 33, 675–689. DOI: 10.1016/j.ijmultiphaseflow.2006.12.004.
  • 15. Kuo, H.P., Wu, C.T. & Hsu, R.C. (2011). Continuous toluene vapour photocatalytic deduction in a multi-stage fluidised bed. Powder Technol. 210, 225–229. DOI: 10.1016/j. powtec.2011.03.022.
  • 16. Lim, T.H. & Kim, S.D. Photocatalytic degradation of trichloroethylene over TiO2/SiO2 in an annulus fluidized bed reactor. (2002). Korean J. Chem. Eng. 19, 1072–1077. DOI:10.1007/BF02707235.
  • 17. Tryba, B., Rychtowski, P., Srenscek-Nazzal, J. & Przepiórski, J. (2020). The influence of TiO2 structure on the complete decomposition of acetaldehyde gas, Mater. Res. Bulletin 126, 110816. DOI: 10.1016/j.materresbull.2020.110816.
  • 18. Wu, C.-Y., Tu, K.-J., Deng, J.-P., Lo, Y.-S. & Wu, C.-H. (2017). Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis. Materials, 10, 566. DOI: 10.3390/ma10050566.545904428772926.
  • 19. Chen, W., Takai, C., Khosroshahi, H.R., Fuji, M. & Shirai, T. (2015). Surfactant-free fabrication of SiO2-coated negatively charged polymer beads and monodisperse hollow SiO2 particles, Colloids Surfaces A Physicochem. Eng. Asp. 481, 375–383. DOI:10.1016/j.colsurfa.2015.06.008.
  • 20. Ciambelli, P., Sannino, D., Palma, V., Vaiano, V. & Mazzei, R. S. (2009). Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System. Internat. J. Photoenergy, 2009, Article ID 709365. DOI: 10.1155/2009/709365.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bf22532-c6f6-467a-9184-2a076f6c98f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.