PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A nonlinear statistical empirical model for transversely isotropic rocks under uniaxial compression condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical characteristics of transversely isotropic rocks are significantly different under various levels of inclination, and it is difficult to describe exactly the mechanical behaviour of transversely isotropic rocks. Assuming that rock consists of a great deal of microelements, and the microelement strength controlled by Mohr-Coulomb criterion follows the log normal distribution. The elastic modulus is used to reflect the anisotropy of rock, and the weak patches stiffness model is verified and employed to depict the variation of elastic modulus with different inclination angle. Based on basic damage mechanics theory and statistical method, a nonlinear statistical empirical model for transversely isotropic rocks is proposed under uniaxial compressive condition. In order to verify the correctness of the proposed model, comparison analyses between predicted results and experimental data taken from published literature are carried out, which have good consistency. Finally, the discussions on the influences of the distribution parameters α, c and elastic modulus with different inclination angle, Eθ, on proposed model is offered.
Rocznik
Strony
37--47
Opis fizyczny
Bibliogr. 30 poz., il., tab.
Twórcy
  • School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, China
autor
autor
  • School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, China
Bibliografia
  • [1] D. Krajcinovic, M.A. Silva, “Statistical aspects of the continuous damage theory”, International Journal of Solids and Structures, 1982, no. 18, no. 7, pp. 551-562, DOI: 10.1016/0020-7683(82)90039-7.
  • [2] J. Lemaitre, “How to use damage mechanics”, Nuclear Engineering and Design, 1984, vol. 80, no. 2, pp. 233-245, DOI: 10.1016/0029-5493(84)90169-9.
  • [3] C.A. Tang, Disaster during Rock Fracture. Coal Industry Press, Beijing, 1993.
  • [4] W.G. Cao, Z.L. Fang, X.J. Tang, “A study of statistical constitutive model for softening and damage rocks”, Chinese Journal of Rock Mechanics and Engineering, 1998, no. 17, pp. 628-633.
  • [5] Z.L. Wang, Y.C. Li, J.G. Wang, “A damage-softening statistical constitutive model considering rock residual strength”, Computers and Geosciences, 2007, vol. 33, no. 1, pp. 1-9, DOI: 10.1016/j.cageo.2006.02.011.
  • [6] T.T. Yu, “Statistical damage constitutive model of quasi-brittle materials”, Journal of Aerospace Engineering, 2009, vol. 22, no. 1, pp. 95-100, DOI: 10.1061/(ASCE)0893-1321(2009)22:1(95).
  • [7] W.G. Cao, H. Zhao, X. Li, Y.J. Zhang, “Statistical damage model with strain softening and hardening for rocks under the influence of voids and volume changes”, Canadian Geotechnical Journal, 2010, vol. 47, no. 8, pp. 857-871.
  • [8] J. Deng, D.S. Gu, “On a statistical damage constitutive model for rock materials”, Computers&Geosciences, 2011, vol. 37, no. 2, pp. 122-128, DOI: 10.1016/j.cageo.2010.05.018.
  • [9] J.B. Wang, Z.P. Song, B.Y. Zhao, et al. “A study on the mechanical behavior and statistical damage constitutive model of sandstone”, Arabian Journal for Science and Engineering, 2018, vol. 43, pp. 5179-5192, DOI: 10.1007/s13369-017-3016-y.
  • [10] S. Chen, C.S. Qiao, “Composite damage constitutive model of jointed rock mass considering crack propagation length and joint friction effect”, Arabian Journal of Geosciences, 2018, vol. 11, no. 11, DOI: 10.1007/s12517-018-3643-y.
  • [11] C.B. Li, L.Z. Xie, L. Ren, J. Wang, “Progressive failure constitutive model for softening behavior of rocks based on maximum entropy theory”, Environmental Earth Sciences, 2015, vol. 73, pp. 5905-5915, DOI: 10.1007/s12665-015-4228-7.
  • [12] H.Z. Li, H.J. Liao, G.D. Xiong, et al., “A three-dimensional statistical damage constitutive model for geomaterials”, Journal of Mechanical Science and Technology, 2015, vol. 29, pp. 71-77.
  • [13] X.S. Liu, J.G. Ning, Y.L. Tan, Q.H. Gu, “Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading”, International Journal of Rock Mechanics and Mining Sciences, 2016, vol. 85, pp. 27-32, DOI: 10.1016/j.ijrmms.2016.03.003.
  • [14] H.Y. Liu, L.M. Zhang, “A damage constitutive model for rock mass with nonpersistently closed joints under uniaxial compression”, Arabian Journal for Science and Engineering, 2015, vol. 40, pp. 3107-3117, DOI: 10.1007/s13369-015-1777-8.
  • [15] C. Gao, L.Z. Xie, H.P. Xie, et al., “Estimation of the equivalent elastic modulus in shale formation: Theoretical model and experiment”, Journal of Petroleum Science and Engineering, 2017, vol. 151, pp. 468-479, DOI: 10.1016/j.petrol.2016.12.002.
  • [16] S. Chen, C.S. Qiao, C.S. Ye, M.U. Khan, “Comparative study on three-dimensional statistical damage constitutive modified model of rock based on power function and Weibull distribution”, Environmental Earth Sciences, 2018, vol. 77, art. ID 108, DOI: 10.1007/s12665-018-7297-6.
  • [17] H. Zhao, C. Zhang, W.G. Cao, M.H. Zhao, “Statistical meso-damage model for quasi-brittle rocks to account for damage tolerance principle”, Environmental Earth Sciences, 2016, vol. 75, art. ID 862, DOI: 10.1007/s12665-016-5681-7.
  • [18] J. Peng, M. Cai, G. Rong, et al., “Determination of confinement and plastic strain dependent postpeak strength of intact rocks”, Engineering Geology, 2017, vol. 2018, pp. 187-196, DOI: 10.1016/j.enggeo.2017.01.018.
  • [19] J.W. Cho, H. Kim, S. Jeon, K.B. Min, “Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist”, International Journal of Rock Mechanics and Mining Sciences, 2012, vol. 50, pp. 158-169, DOI: 10.1016/j.ijrmms.2011.12.004.
  • [20] L.X. Xiong, H.Y. Yuan, Y. Zhang, et al., “Experimental and numerical study of the uniaxial compressive stress-strain relationship of a rock mass with two parallel joints”, Archives of Civil Engineering, 2019, vol. 65, no. 2, pp. 67-80, DOI: 10.2478/ace-2019-0019.
  • [21] N. Yao, Y.C. Ye, B. Hu, et al., “Particle flow code modeling of the mechanical behavior of layered rock under uniaxial compression”, Archives of Mining Sciences, 2019, vol. 64, no. 1, pp. 181-196, DOI: 10.24425/ams.2019.126279.
  • [22] X.J. Zhang, H.M. An, “Analysis of positive elevation effect and prediction of vibration velocity of bench blasting vibration”, Archives of Civil Engineering, 2021, vol. 67, no. 1, pp. 599-618, DOI: 10.24425/ace.2021.136492.
  • [23] A. Nowakowski, J. Nurkowski, “About some problem related to determination of the E.G. boit coefficient for rocks”, Archives of Mining Sciences, 2021, vol. 66, no. 1, pp. 133-150, DOI: 10.24425/ams.2021.136697.
  • [24] R. Danzer, P. Supancic, J. Pascual, T. Lube, “Fracture statistics of ceramics - Weibull statistics and deviations from Weibull statistics”, Engineering Fracture Mechanics, 2007, vol. 74, no. 18, pp. 2919-2932, DOI: 10.1016/j.engfracmech.2006.05.028.
  • [25] B. Basu, D. Tiwari, D. Kundu, R. Prasad, “Is Weibul distribution the most appropriate statistical strength distribution for brittle materials”, Ceramics International, 2009, vol. 35, no. 1, pp. 237-246, DOI: 10.1016/ j.ceramint.2007.10.003.
  • [26] M.T. Todinov, “Is Weibull distribution the correct model for predicting probability of failure initiated by non-interacting flaws”, International Journal of Solids and Structures, 2009, vol. 46, no. 3-4, pp. 887-901, DOI: 10.1016/j.ijsolstr.2008.09.033.
  • [27] M. Ji, K. Chen, H.J. Guo, “Constitutive model of rock uniaxial damage based on rock strength statistics”, Advances in Civil Engineering, 2018, vol. 2018, art. ID 5047834, pp. 1-8, DOI: 10.1155/2018/5047834.
  • [28] E. Fjær, O.M. Nes, “The impact of heterogeneity on the anisotropic strength of an outcrop shale”, Rock Mechanics and Rock Engineering, 2014, vol. 47, pp. 1603-1611, DOI: 10.1007/s00603-014-0598-5.
  • [29] Y.M. Tien, P.F. Tsao, “Preparation and mechanical properties of artificial transversely isotropic rock”, International Journal of Rock Mechanics and Mining Sciences, 2000, vol. 37, no. 6, pp. 1001-1012, DOI: 10.1016/S1365-1609(00)00024-1.
  • [30] C.G. Jia, J.H. Chen, Y.T. Guo, et al., “Research on mechanical behaviors and failure modes of layer shale”, Rock and Soil Mechanics, 2013, vol. 34, pp. 57-61.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8beffda6-7eb6-4304-a8f7-a6de4c319de5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.