PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physiological and Biochemical Responses of Maize (Zea mays L.) to the Application of Re-Treated Urban Wastewater Using Wood Waste Biochar

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work aimed to evaluate the effect of re-treated urban wastewater using wood biochar on the development of maize (Zea mays L.) plants. Maize seeds were sown in plastic pots, containing agronomic soil, and watered with treated wastewater (TWW) before and after re-treatment with wood waste biochar. Before re-treatment, results indicated that the application of TWW at 75% significantly enhanced the maize growth, in terms of plant height, shoot fresh (SFW) and dry (SDW) weight compared to control (natural water). In turn, the application of TWW at 100% showed the opposite effects. In fact, the total chlorophyll content and relative water content (RWC) were significantly decreased by 20% and 4%, respectively, compared to control plants. Furthermore, TWW at 100% significantly (p < 0.05) induced an accumulation of oxidative stress markers (MDA, H2O2). The non-enzymatic antioxidant process (total polyphenols and flavonoids) and the enzymatic antioxidant activity (CAT and APX) were also interestingly increased. The obtained negative correlation between maize growth and the accumulation of oxidative stress markers could explain the showed reduction in maize growth under 100% TWW. However, this effect seems to be alleviated in maize plants when they were watered with TWW re-treated with biochar, indeed, a significant improvement was marked in plant height, SFW, SDW, total chlorophyll content and RWC by 44%, 106%, 176%, 38% and 12%, respectively, compared to maize under 100% TWW. The finding suggests that the use of TWW diluted or re-treated by wood biochar could be a relevant approach to valorize TWW in agricultural purposes.
Rocznik
Strony
180--193
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
  • Laboratory of Biotechnology and Sustainable Development of Natural Resources, Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
  • Laboratory of Ecology and Environment, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, 7955 Sidi Othman, Casablanca, Morocco
  • Laboratory of Ecology and Environment, Faculty of Sciences Ben M’sik, Hassan II University of Casablanca, 7955 Sidi Othman, Casablanca, Morocco
  • Data Science for Sustainable Earth Laboratory (Data4Earth), Faculty of Sciences and Technics, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
Bibliografia
  • 1. Abdalla K.Z., Hammam G. 2014. Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices. International Journal of Sciences: Basic and Applied Research, 13, 1, 42–48
  • 2. APHA-AWWA-WEF. 2017. Standard methods for the examination of water and wastewater, 23rd edn, Washington D.C
  • 3. Arnon D.I. 1949. Copper enzymes in isolated Chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiology, 24, 1, 1–15. https://doi.org/https://doi.org/10.1104%2Fpp.24.1.1
  • 4. Barakat A., Meddah R., Afdali M., Touhami F. 2018. Physicochemical and microbial assessment of spring water quality for drinking supply in Piedmont of Béni-Mellal Atlas (Morocco). Physics and Chemistry of the Earth, 104, 39–46. https://doi.org/10.1016/j.pce.2018.01.006
  • 5. Bouhadi M., Daoui O., El Hajjouji H., Elkhattabi S., Chtita S., Talbi M., Fougrach H. 2023. Study of the competition between Pi and Cr (VI) for the use of Pitransporter at Vicia faba L. using molecular modeling. Plant Physiology and Biochemistry, 196, 695–702.
  • 6. Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/https://doi.org/10.1016/0003-2697(76)90527-3
  • 7. Braghiroli F.L., Bouafif H., Neculita C.M., Koubaa A. 2018. Activated biochar as an effective sorbent for organic and inorganic contaminants in water. Water, Air, and Soil Pollution, 229, 7. https://doi.org/10.1007/s11270-018-3889-8
  • 8. Chaganti V.N., Ganjegunte G., Niu G., Ulery A., Flynn R., Enciso J.M., Meki M.N., Kiniry J.R. 2020. Effects of treated urban wastewater irrigation on bioenergy sorghum and soil quality. Agricultural Water Management, 228, 105894. https://doi.org/10.1016/j.agwat.2019.105894
  • 9. Chang C.C., Yang M.H., Wen H.M., Chern, J.C. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 3, 178–182.
  • 10. Chaoua S., Boussaa S., El Gharmali A., Boumezzough A. 2019. Impact of irrigation with wastewater on accumulation of heavy metals in soil and crops in the region of Marrakech in Morocco. Journal of the Saudi Society of Agricultural Sciences, 18, 4, 429436. https://doi.org/10.1016/j.jssas.2018.02.003
  • 11. Chojnacka K., Witek-Krowiak A., Moustakas K., Skrzypczak D., Mikula K., Loizidou M. 2020. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renewable and Sustainable Energy Reviews, 130. https://doi.org/10.1016/j.rser.2020.109959
  • 12. Demidchik V. 2017. Reactive oxygen species and their role in plant oxidative. Plant Stress Physiology. https://doi.org/10.1079/9781780647296.0000
  • 13. D’souza MR., Devaraj. 2013. Role of calcium in increasing tolerance of Hyacinth bean to salinity. Journal of Applied Biology and Biotechnology, 1, 3, 11–20. https://doi.org/10.7324/JABB.2013.1302
  • 14. El Moukhtari A., Cabassa-Hourton C., Crilat E., Carol P., Lamsaadi N., Hidri R., Farissi M., Savouré A. 2023. Salt stress is alleviated by either proline or silicon but not by their combination in alfalfa (Medicago sativa L.) inoculated with a salt-tolerant Ensifer meliloti strain. Journal of Plant Growth Regulation, 42, 4048-4062. https://doi.org/10.1007/s00344-022-10865-1
  • 15. El Moukhtari A., Carol P., Mouradi M., Savoure A., Farissi M. 2021. Silicon improves physiological, biochemical, and morphological adaptations of alfalfa (Medicago sativa L.) during salinity stress. Symbiosis, 85, 305–324. https://doi.org/10.1007/s13199-021-00814-z
  • 16. El Moukhtari A., Lamsaadi N., Farssi O., Oubenali A., El Bzar I., Lahlimi Alami Q., Triqui ZEA., Lazali M., Farissi M. 2022. Silicon- and phosphatesolubilizing Pseudomonas alkylphenolica PF9 alleviate low phosphorus availability stress in alfalfa (Medicago sativa L.). Frontiers in Agronomy, 4, 823396. https://doi.org/10.3389/fagro.2022.823396
  • 17. El Moussaoui T., Mandi L., Wahbi S., Masi S., Ouazzani N. 2019. Soil proprieties and alfalfa (Medicago sativa L.) responses to sustainable treated urban wastewater reuse. Archives of Agronomy and Soil Science, 65, 1900–1912. https://doi.org/10.1080/03650340.2019.1580359
  • 18. El Mrabet I., Nawdali M., Rafqah S., Valdah S., Benzina M., Zaitan H. 2020. Low-cost biomass for the treatment of landfill leachate from Fez City: application of a combined coagulation–adsorption process. Euro-Mediterranean Journal for Environmental Integration, 5, 3. https://doi.org/10.1007/s41207-020-00201-y
  • 19. Elfanssi S., Ouazzani N., Mandi L. 2018. Soil properties and agro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agricultural Water Management, 202, 231–240. https://doi.org/10.1016/j.agwat.2018.02.003
  • 20. Enaime G., Baçaoui A., Yaacoubi A., Lübken M. 2020. Biochar for wastewater treatment-conversion technologies and applications. Applied Sciences (Switzerland), 10, 10. https://doi.org/10.3390/app10103492
  • 21. FAOSTAT. 2023. Production of maize in Morocco https://www.fao.org/faostat/en/#data/QCL/visualize. Retrieved December 28, 2023
  • 22. Fricke W., Akhiyarova G., Wei W., Alexandersson E., Miller A., Kjellbom PO., Richardson A., Wojciechowski T., Schreiber L., Veselov D., Kudoyarova G., Volkov V. 2006. The short-term growth response to salt of the developing barley leaf. Journal of Experimental Botany, 57, 5, 10791095. https://doi.org/10.1093/jxb/erj095
  • 23. Ghoulam C., Foursy A., Fares K. 2002. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environmental and Experimental Botany, 47, 1, 39–50. https://doi.org/10.1016/S0098-8472(01)00109-5
  • 24. Heath R.L., Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125, 1, 189–198. https://doi.org/10.1016/0003-9861(68)90654-1
  • 25. Hossain M.A., Hasanuzzaman M., Fujita M. 2010. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiology and Molecular Biology of Plants, 16, 3, 259–272. https://doi.org/10.1007/s12298-010-0028-4
  • 26. Hu J., Zhao L., Luo J., Gong H., Zhu N. 2022. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. In Journal of Hazardous Materials, 438. https://doi.org/10.1016/j.jhazmat.2022.129437
  • 27. Huggins T.M., Haeger A., Biffinger J.C., Ren Z.J. 2016. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research, 94, 225–232. https://doi.org/10.1016/j.watres.2016.02.059
  • 28. Khalid S., Shahid M., Natasha N., ALOthman Z.A., Al-Kahtani A.A., Murtaza B. 2023. Plant Physiological Responses After Fresh and Sewage Water Irrigation: Plant Health Perspectives. Gesunde Pflanzen, 75, 1289–1296. https://doi.org/10.1007/S10343-022-00756-6/METRICS
  • 29. Kim J.M., Roh A.S., Choi S.C., Kim E.J., Choi M.T., Ahn B.K., Kim S.K., Lee Y.H., Joa J.H., Kang S.S., Lee S.A., Ahn J.H., Song J., Weon H.Y. 2016. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. Journal of Microbiology, 54, 838845. https://doi.org/10.1007/s12275-016-6526-5
  • 30. Lamsaadi N., El Moukhtari A., Oubenali A., Farissi M. 2022a. Exogenous silicon improves salt tolerance of Fenugreek (Trigonella foenum-graecum L.) during seed germination and early seedling stages. Biologia, 77, 8, 2023–2036. https://doi.org/10.1007/s11756-022-01035-5
  • 31. Lamsaadi N., El Moukhtari A., Irouane Z., Mouradi M., El Hassni M., Ghoulam C., Farissi M. 2022b. Beneficial role of exogenous silicon on yield, antioxidant systems, osmoregulation and oxidative stress in fenugreek (Trigonella foenum-graecum L.) under salinity stress. Silicon 15, 547-561. https://doi.org/10.1007/s12633-022-02034-6
  • 32. Mahmood R., Sharif F., Ali S., Hayyat M.U. 2013. Bioremediation of textile effluent by indigenous bacterial consortia and its effects on Zea mays L. cv c1415. The Journal of Animal and Plant Sciences, 23, 4, 1193–1199.
  • 33. Merbouh C., Namoussi S., Kabriti M., Naamane Y., Rihane A., Iounes N. 2022. Physico-Chemical Characterization of an Urban Wastewater Effluent and Its Impact on the Receiving Environment: Oued Nfifikh (Morocco). Journal of Ecological Engineering, 23, 3, 183–193. https://doi.org/10.12911/22998993/145464
  • 34. Moroccan standards. 2018. The general maximum limits for the discharge to surface water or groundwater /Official Bulletin 6641 (In French). http:// www.environnement.gov.ma/fr/lois-et-reglementations/normes. published on January, 22, 2018.
  • 35. Mousavi S.R., Shahsavari M. 2014. Effects of treated municipal wastewater on growth and yield of maize (Zea mays). Biological Forum–An International Journal, 6, 2, 228–233.
  • 36. Nakano Y., Asada K. 1987. Purification of ascorbate peroxidase in spinach chloroplasts; its inactivation in ascorbate-depleted medium and reactivation by monodehydroascorbate radical monodehydroascorbate radical. Plant and Cell Physiology, 28, 1, 131–140. https://doi.org/10.1093/oxfordjournals.pcp.a077268
  • 37. Ortega-Pozo J.L., Alcalá F.J., Poyatos J.M., Martín-Pascual J. 2022. Wastewater reuse for irrigation agriculture in Morocco: influence of regulation on feasible implementation. Land, 11, 12. https://doi.org/10.3390/land11122312
  • 38. Pedrero F., Camposeo S., Pace B., Cefola M., Vivaldi G.A. 2018. Use of reclaimed wastewater on fruit quality of nectarine in Southern Italy. Agricultural Water Management, 203, 186–192. https://doi.org/10.1016/j.agwat.2018.01.029
  • 39. Ramzan M., Sana S., Javaid N., Shah A.A., Ejaz S., Malik W.N., Yasin N.A., Alamri S., Siddiqui M.H., Datta R., Fahad S., Tahir N., Mubeen S., Ahmed N., Ali M.A., El Sabagh A., Danish S. 2021. Mitigation of bacterial spot disease induced biotic stress in Capsicum annuum L. cultivars via antioxidant enzymes and isoforms. Scientific Reports, 11, 1, 1–10. https://doi.org/10.1038/s41598-021-88797-1
  • 40. Rekik I., Chaabane Z., Missaoui A., Bouket A.C., Luptakova L., Elleuch A., Belbahri L. 2017. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (Festuca arundinacea Schreb.). Journal of Hazardous Materials, 326, 165–176. https://doi.org/10.1016/j.jhazmat.2016.12.033
  • 41. Rodier J., Legube B., Merlet N., Coll. 2009. Water analysis (in French). 9th edn, Dunod, Paris.
  • 42. Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. 2021. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants, 10, 1, 118. https://doi.org/10.3390/plants10010118
  • 43. Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. 2019. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24, 13, 2452. https://doi.org/10.3390/MOLECULES24132452
  • 44. Singleton V.L., Rossi J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 3.
  • 45. Sun Y., Yu I.K.M., Tsang D.C.W., Cao X., Lin D., Wang L., Graham N.J.D., Alessi D.S., Komárek M., Ok Y.S., Feng Y., Li X.D. 2019. Multifunctional iron-biochar composites for the removal of potentially toxic elements, inherent cations, and heterochloride from hydraulic fracturing wastewater. Environment International, 124, 521–532. https://doi. org/10.1016/j.envint.2019.01.047
  • 46. Taïbi K., Taïbi F., Ait Abderrahim L., Ennajah A., Belkhodja M., Mulet J.M. 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306–312. https://doi.org/10.1016/J.SAJB.2016.03.011
  • 47. Ungureanu N., Vlăduț V., Voicu G. 2020. Water scarcity and wastewater reuse in crop irrigation. In Sustainability (Switzerland), 12, 21, 1–19. MDPI. https://doi.org/10.3390/su12219055
  • 48. Xia S., Song Z., Jeyakumar P., Bolan N., Wang H. 2020. Characteristics and applications of biochar for remediating Cr (VI)-contaminated soils and wastewater. Environmental Geochemistry and Health, 42, 6, 1543–1567. https://doi.org/10.1007/s10653-019-00445-w
  • 49. Xiang W., Zhang X., Chen J., Zou W., He F., Hu X., Tsang D.C.W., Ok Y.S., Gao B. 2020. Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, 126539. https://doi.org/10.1016/j.chemosphere.2020.126539
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8be913ed-17dc-4712-ae03-fef249ea0c8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.