PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of direct metal laser sintering - DMLS and heat treatment influence on the Inconel 713C nickel alloy structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ laserowego przetapiania w złożu proszku - DMLS i obróbki cieplnej na strukturę stopu niklu Inconel 713C
Języki publikacji
EN
Abstrakty
EN
The group of nickel-based superalloys produced in the DMLS (Direct Metal Laser Sintering) process is limited to materials, which produced conventionally do not have properties to allow to use them for rotating components of aircraft engines. This work attempts to optimize the technological parameters of the DMLS process for the Inconel 713C nickel superalloy. A heat treatment was performed for selected samples to investigate the effect on the morphology of the Ni3Al phase. The microstructure analysis and hardness tests were carried out. The material after the DMLS process was characterized by the presence of much smaller dendrites than the cast material and exceeded its hardness. Additionally, for the tested variants of heat treatment, the material was characterized by smaller sizes of the Ni3Al phase by more than half. In order to ensure the stability of the microstructure, further optimization of the dedicated heat treatment after the DMLS process is required, as the standard heat treatment for Inconel 713C cast nickel superalloy does not fully recrystallize the material.
PL
Grupa nadstopów niklu wytwarzanych w procesie DMLS (ang. Direct Metal Laser Sintering) ogranicza się do materiałów, które wytwarzane konwencjonalnie nie posiadają właściwości, pozwalających zastosować je na elementy wirujące silników lotniczych. W pracy podjęto próbę optymalizacji parametrów technologicznych procesu DMLS dla nadstopu niklu Inconel 713C. Dla wybranych próbek przeprowadzono obróbkę cieplną w celu zbadania jej wpływu na morfologię fazy Ni3Al. Przeprowadzono analizę mikrostruktury oraz badania twardości. Materiał po procesie DMLS charakteryzował się obecnością znacznie mniejszych dendrytów niż materiał odlewany oraz przewyższał jego twardość. Dodatkowo dla zbadanych wariantów obróbki cieplnej materiał charakteryzował się mniejszymi rozmiarami fazy Ni3Al o ponad połowę. W celu zapewnienia stabilności mikrostruktury, wymagana jest dalsza optymalizacja obróbki cieplnej dedykowanej po procesie DMLS, ponieważ standardowa obróbka cieplna dla odlewanego nadstopu niklu Inconel 713C nie zapewnia pełnej rekrystalizacji materiału.
Rocznik
Strony
49--56
Opis fizyczny
Bibliogr. 27 poz., il., tab.
Twórcy
autor
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] Masiol M., Harrison R.M., Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 2014, Vol. 95, 409-55. https://doi.org/10.1016/j.atmosenv.2014.05.070
  • [2] Fulara S., Chmielewski M., Gieras M., Variable geometry in miniature gas turbine for improved performance and reduced environmental impact. Energies, 2020, Vol. 13(19). https://doi.org/10.3390/en13195230
  • [3] Nguyen T.H., Tri Nguyen P., Garnier F., Evaluation of the relationship between the aerothermodynamic process and operational parameters in the high-pressure turbine of an aircraft engine. Aerospace Science and Technology, 2019, Vol. 86, 93-105. https://doi.org/10.1016/j.ast.2019.01.011
  • [4] Lu Z.L., Cao J.W., Jing H., Liu T., Lu F., Wang D.X., et al., Review of main manufacturing processes of complex hollow turbine blades: This paper critically reviews conventional and advanced technologies used for manufacturing hollow turbine blades.Virtual and Physical Prototyping, 2013, Vol. 8(2), 87-95. https://doi.org/10.1080/17452759.2013.790600
  • [5] Tian Z., Zhang C., Wang D., Liu W., Fang X., Wellmann D., et al., A review on laser powder bed fusion of inconel 625 nickel-based alloy. Applied Sciences, 2020, Vol. 10(1). https://doi.org/10.3390/app10010081
  • [6] Yang H., Yang J., Huang W., Jing G., Wang Z., Zeng X., Controllable in-situ aging during selective laser melting: Stepwise precipitation of multiple strengthening phases in Inconel 718 alloy. Journal of Materials Science & Technology, 2019, Vol. 35. https://doi.org/10.1016/j.jmst.2019.05.024
  • [7] Perevoshchikova N., Rigaud J., Sha Y., Heilmaier M., Finnin B., Labelle E., et al., Optimisation of selective laser melting parameters for the Ni-based superalloy IN-738 LC using Doehlert’s design. Rapid Prototyping Journal, 2017, Vol. 23(5), 881-92. https://doi.org/10.1108/RPJ-04-2016-0063
  • [8] Ojo O.A., Richards N.L., Chaturvedi M.C., Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy. Scripta Materialia, 2004, Vol. 50(5), 641-6. https://doi.org/10.1016/j.scriptamat.2003.11.025
  • [9] Chamanfar A., Jahazi M., Bonakdar A., Morin E., Firoozrai A., Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Materials Science and Engineering A, 2015, Vol. 642, 230-40. https://doi.org/10.1016/j.msea.2015.06.087
  • [10] Chen Z., Chen S., Wei Z., Zhang L., Wei P., Lu B., et al., Anisotropy of nickel-based superalloy K418 fabricated by selective laser melting. Progress in Natural Science: Materials International, 2018, Vol. 28. https://doi.org/10.1016/j.pnsc.2018.07.001
  • [11] Adamiec J., Łyczkowska K., Remelting of inconel 713C alloy by laser and plasma arc. Welding Technology Review, 2017, Vol. 89(5). https://doi.org/10.26628/ps.v89i5.757
  • [12] Long H., Mao S., Liu Y., Zhang Z., Han X., Microstructural and compositional design of Ni-based single crystalline superalloys - A review. Journal of Alloys and Compounds, 2018, Vol. 743, 203-20. https://doi.org/10.1016/j.jallcom.2018.01.224
  • [13] Łyczkowska K., Adamiec J., Jachym R., Kwieciński K., Properties of the Inconel 713 Alloy Within the High Temperature Brittleness Range. Arch. of Foundry Engineering, 2017, Vol. 17. https://doi.org/10.1515/afe-2017-0138
  • [14] AMS5391H: Nickel Alloy, Corrosion and Heat Resistant, Investment Castings, 73Ni - 13Cr - 4.5Mo - 2.3Cb (Nb) - 0.75Ti - 6.0Al - 0.010B - 0.10Zr Vacuum Cast, As-Cast - SAE International.
  • [15] Ye D., Hsi Fuh J.Y., Zhang Y., Hong G.S., Zhu K., In situ monitoring of selective laser melting using plume and spatter signatures by deep belief networks. ISA Transactions, 2018, Vol. 81(May 2019), 96-104. https://doi.org/10.1016/j.isatra.2018.07.021
  • [16] Cheng B., Shrestha S., Chou K., Stress and deformation evaluations of scanning strategy effect in selective laser melting. Additive Manufacturing, 2016, Vol. 12. https://doi.org/10.1016/j.addma.2016.05.007
  • [17] Xiong Z., Zhang P., Tan C., Dong D., Ma W., Yu K., Selective Laser Melting and Remelting of Pure Tungsten. Advanced Engineering Materials, 2020, Vol. 22(3), 1901352. https://doi.org/10.1002/adem.201901352
  • [18] Galizoni B.B., Couto A.A., Reis D.A.P., Heat treatments effects on nickel-based superalloy inconel 713C. Metals, 2019, Vol. 9(1). https://doi.org/10.3390/met9010047
  • [19] Lachowicz M., Dudziński W., Haimann K., Podrez-Radziszewska M., Microstructure transformations and cracking in the matrix of γ-γ′ superalloy Inconel 713C melted with electron beam. Materials Science and Engineering A, 2008, Vol. 479. https://doi.org/10.1016/j.msea.2007.06.064
  • [20] Safarloo S., Loghman F., Azadi M., Azadi M., Optimal Design Experiment of Ageing Time and Temperature in Inconel-713C Superalloy Based on Hardness Objective. Trans. of the Indian Institute of Metals, 2018, Vol. 71(7).
  • [21] Jonšta P., Jonšta Z., Sojka J., Čížek L., Hernas A., Structural characteristics of nickel super alloy INCONEL 713LC after heat treatment. Journal of Achiev. in Materials and Manufacturing Engineering, 2007, Vol. 21(2), 29-32.
  • [22] Chu F., Zhang K., Shen H., Liu M., Huang W., Zhang X., et al., Influence of satellite and agglomeration of powder on the processability of AlSi10Mg powder in Laser Powder Bed Fusion. Journal of Materials Research and Technology, 2021, Vol. 11, 2059-73. https://doi.org/10.1016/j.jmrt.2021.02.015
  • [23] Zhang B., Tao C., Lu X., Liu C., Hu C., Bai M., Recrystallization of single crystal nickel-based superalloy. Journal of Iron and Steel Research International, 2009, Vol. 16(6). https://doi.org/10.1016/S1006-706X(10)60031-3
  • [24] Nawrocki J., Gancarczyk K., Manaj W., Albrecht R., Cygan R., Krupa K., The Effect of Superalloy Structure on Ultrasonic Wave Parameters. Fatigue of Aircraft Structures, 2015, Vol. 1. https://doi.org10.1515/fas-2015-0010
  • [25] Körner C., Ramsperger M., Meid C., Bürger D., Wollgramm P., Bartsch M., et al., Microstructure and Mechanical Properties of CMSX-4 Single Crystals Prepared by Additive Manufacturing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, Vol. 49(9), 3781-92. https://doi.org/10.1007/s11661-018-4762-5
  • [26] Aboulkhair N.T., Simonelli M., Parry L., Ashcroft I., Tuck C., Hague R., 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in Materials Science, 2019, Vol. 106. https://doi.org/10.1016/j.pmatsci.2019.100578
  • [27] Liu W.H., Wu Y., He J.Y., Nieh T.G., Lu Z.P., Grain growth and the Hall-Petch relationship in a high-entropy FeCrNiCoMn alloy. Scripta Materialia, 2013, Vol. 68(7), 526-9. https://doi.org/10.1016/j.scriptamat.2012.12.002
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8be615a3-86e0-49ab-ad69-b21d20799c1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.