PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Could submarine groundwater discharge be a significant carbon source to the southern Baltic Sea?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Submarine Groundwater Discharge (SGD) is an important yet poorly recognised pathway of material transport to the marine environment. This work reports on the results of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) concentrations and loads in the groundwater seeping into the southern Baltic Sea. Most of the research was carried out in the Bay of Puck (2009-2010), while in 2013 the study was extended to include several other groundwater seepage impacted areas situated along the Polish coastline. The annual average concentrations of DIC and DOC in the groundwater were equal to 64.5 ± 10.0 mg C L-1 and 5.8 ± 0.9 mg C L-1 respectively. The carbon specific flux into the Bay of Puck was estimated at 850 mg m-2 yr-1. The loads of carbon via SGD were scaled up for the Baltic Sea sub-basins and the entire Baltic Sea. The DIC and DOC fluxes via SGD to the Baltic Sea were estimated at 283.6 ± 66.7 kt yr-1 and 25.5 ± 4.2 kt yr-1. The SGD derived carbon load to the Baltic Sea is an important component of the carbon budget, which gives the sea a firmly heterotrophic status.
Czasopismo
Rocznik
Strony
327--347
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, 70-383 Szczecin, Poland
  • Institute of Oceanology, Polish Academy of Sciences, 70-383 Szczecin, Poland
  • Institute of Oceanology, Polish Academy of Sciences, 70-383 Szczecin, Poland
  • Institute of Oceanology, Polish Academy of Sciences, 70-383 Szczecin, Poland
Bibliografia
  • [1]. Beck M., Dellwig O., Kolditz K., Freund H., Liebezeit G., Schnetger B., Brumsack H. J., 2007, In situ pore water sampling in deep intertidal flat sediments, Limnol. Oceanogr., 5, 136-144, http://dx.doi.org/10.4319/lom.2007.5.136
  • [2]. Bełdowski J., Pempkowiak J., 2003, Horizontal and vertical variabilities of mercury concentration and speciation in sediments of the Gdansk Basin, Southern Baltic Sea, Chemosphere, 52 (3), 645-654, http://dx.doi.org/10.1016/S0045-6535(03)00246-7
  • [3]. Borges A. V., 2005, Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean?, Estuaries, 28, 3-27, http://dx.doi.org/10.1007/BF02732750
  • [4]. Cable J. E., Burnett W. C., Chanton J. P., 1997, Magnitude and variations of groundwater along a Florida marine shoreline, Biogeochemistry, 38 (2), 189-205, http://dx.doi.org/10.1023/A:1005756528516
  • [5]. Cai W.-J., Wang Y.-C., Krest J., Moore W. S., 2003, The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean, Geochim. Cosmochim. Acta, 67 (4), 631-639, http://dx.doi.org/10.1016/S0016-7037(02)01167-5
  • [6]. Chen C.-T. A., Borges A. V., 2009, Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 , Deep-Sea Res. Pt. II, 56 (8-10), 578-590, http://dx.doi.org/10.1016/j.dsr2.2009.01.001
  • [7]. Chen C.-T. A., Liu K.-K., Macdonald R., 2003, Continental margin exchanges, Ocean Biogeochemistry: The role of the ocean carbon cycle in global change, IGBP Book Series, Springer, 53-97 pp.
  • [8]. Emelyanov E., 1995, Baltic Sea: Geology, geochemistry, palaeoceanography, pollution, P. P. Shirshov Inst. Oceanol. Russ. Acad. Sci., Atlantic Branch Baltic Ecol. Inst. Hydrosph. Acad. Nat. Sci., Kaliningrad, 119 pp.
  • [9]. Emerson S., Hedges J., 2008, Chemical oceanography and the marine carbon cycle, School of Oceanography, Univ. Washington, Washington, 453 pp., http://dx.doi.org/10.1017/CBO9780511793202
  • [10]. IPCC, 2007, Climate Change Synthesis Report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, 73 pp.
  • [11]. Kaltin S., Haraldsson C., Anderson L. G., 2005, A rapid method for the determination of total dissolved inorganic carbon in seawater with high accuracy and precision, Mar. Chem., 96 (1-2) 53-60, http://dx.doi.org/10.1016/j.marchem.2004.10.005
  • [12]. Korzeniewski K., 2003, Zatoka Pucka, Univ. Gdańsk, Gdynia.
  • [13]. Kotwicki L., Grzelak K., Czub M., Dellwig O., Gentz T., Szymczycha B., Brottcher M., 2013, Submarine groundwater discharge to the Baltic coastal zone - impact on the meiofaunal community, J. Marine Syst., 129, 118-126, http://dx.doi.org/10.1016/j.jmarsys.2013.06.009
  • [14]. Kozerski B., 2007, The Gdańsk hydrological system, Wyd PG, Gdańsk, 112-113. Kryza J., Kryza H., 2006, The analytic and model estimation of the direct groundwater flow to the Baltic Sea on the territory of Poland, Geologos, 10, 153-165.
  • [15]. Kuliński K., Pempkowiak J., 2008, Dissolved organic carbon in the southern Baltic Sea: quantification of factors affecting its distribution, Estuar. Coast. Shelf Sci., 78, 38-44, http://dx.doi.org/10.1016/j.ecss.2007.11.017
  • [16]. Kuliński K., Pempkowiak J., 2011, The carbon budget of the Baltic Sea, Biogeosciences, 8 (11), 3219-3230, http://dx.doi.org/10.5194/bg-8-3219-2011
  • [17]. Kuliński K., Pempkowiak J., 2012, Carbon cycling in the Baltic Sea, Springer, Berlin, 132 pp., http://dx.doi.org/10.1007/978-3-642-19388-0
  • [18]. Liu Q., Dai M., Chen W., Huh C.-A., Wang G., Li Q., Charette M. A., 2012, How significant is submarine groundwater discharge and its associated dissolved inorganic carbon in a river-dominated shelf system?, Biogeosciences, 9, 1777-1795, http://dx.doi.org/10.5194/bg-9-1777-2012
  • [19]. Ludwig W., Amiotte-Suchet P., Probs J.-L., 1996, River discharges of carbon to the world’s oceans: determining local inputs of alkalinity - and of dissolved and particulate organic carbon, Centre de geochimie de la surface, CNRS, 323, 1007-1014.
  • [20]. Moore W. S., 2010, The effect of submarine groundwater discharge on the ocean, Ann. Rev. Mar. Sci., 2, 59-88, http://dx.doi.org/10.1146/annurev-marine-120308-081019
  • [21]. Moore W. S., Blanton J. O., Joye S. B., 2006, Estimates of flushing times, submarine ground water discharge, and nutrient fluxes to Okatee Estuary, South Carolina, J. Geophys. Res., 111, C09006, http://dx.doi.org/10.1029/2005JC003041
  • [22]. Omstedt A., Humborg C., Pempkowiak J., Perttilä M., Rutgersson A., Schneider B., Smith B., 2012, Biogeochemical control of the coupled CO2-O2 system of the Baltic Sea: a review of the results of Baltic-C, AMBIO, 43 (1), 49-53, http://dx.doi.org/10.1007/s13280-013-0485-4
  • [23]. Peltonen K., 2002, Direct groundwater flow to the Baltic Sea, Nordic Counc. Min., Temanord, Copenhagen, 78 pp.
  • [24]. Pempkowiak J., Szymczycha B., Kotwicki L., 2010, Submarine groundwater discharge (SGD) to the Baltic Sea, Rocz. Ochr. Śr., 12, 17-32.
  • [25]. Pempkowiak J., 1983, C18 reversed-phase trace enrichment of short- and long- chain (C2-C8-C20) fatty acids from dilute aqueous solutions and sea water, J. Chromatogr., 258, 93-102, http://dx.doi.org/10.1016/S0021-9673(00)96401-X
  • [26]. Piekarek-Jankowska H., Matciak M., Nowacki J., 1994, Salinity variations as an effect of groundwater seepage through the seabed (Bay of Puck, Poland), Oceanologia, 36, 33-46.
  • [27]. Santos I. R., Burnett W. S., Dittmar T., Suryaputra I. G. N. A., Chanton J., 2009, Tidal pumping drives nutrient and dissolved organic matter dynamics in a Gulf of Mexico subterranean estuary, Geochim. Cosmochim. Acta, 73 (5), 1325-1339, http://dx.doi.org/10.1016/j.gca.2008.11.029
  • [28]. Smith A. M., Cave R. R., 2012, Influence of fresh water, nutrients and DOC in two submarine groundwater-fed estuaries on the west of Ireland, Sci. Total Environ., 438, 260-270, http://dx.doi.org/10.1016/j.scitotenv.2012.07.094
  • [29]. Schulz H. D., Zabel M., 2006, Marine geochemistry, Springer-Verlag, Berlin, Heidelberg, 534 pp., http://dx.doi.org/10.1007/3-540-32144-6
  • [30]. Szczepańska A., Zaborska A., Maciejewska A., Kuliński K., Pempkowiak J., 2012, Distribution and origin of organic matter in the Baltic sea sediments dated with 210Pb and 137Cs, Geochronometria, 39 (1), 1-9, http://dx.doi.org/10.2478/s13386-011-0058-x
  • [31]. Szymczycha B., Miotk M., Pempkowiak J., 2013, Submarine groundwater discharge as a source of mercury in the Bay of Puck, the Southern Baltic Sea, Water Air Soil Pollut., 224 (1542), 14 pp., http://dx.doi.org/10.1007/s11270-013-1542-0
  • [32]. Szymczycha B., Vogler S., Pempkowiak J., 2012, Nutrient fluxes via submarine groundwater discharge to the Bay of Puck, Southern Baltic, Sci. Total Environ., 438, 86-93, http://dx.doi.org/10.1016/j.scitotenv.2012.08.058
  • [33]. Takahashi T., Sutherland S. C., Sweeney C., Poisson A., Metzl N., Tilbrook B., Bates N., Wanninkof R., Feely R. A., Sabine C., Olafsson J., Nojiri Y., 2009, Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects, Deep-Sea Res. Pt. II, 49 (9-10), 1601-1622, http://dx.doi.org/10.1016/S0967-0645(02)00003-6
  • [34]. Thomas H., Bozec Y., Elkalay K., de Baar H. J. W., 2004, Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304, 1005-1007, http://dx.doi.org/10.1126/science.1095491
  • [35]. Thomas H., Pempkowiak J., Wulff F., Nagel K., 2003, Autotrophy, nitrogen accumulation, and nitrogen limitation in the Baltic Sea: a paradox or a buffer for eutrophication, Geophys. Res. Lett., 30, 8-1/8-4.
  • [36]. Thomas H., Schiettecatte L.-S., Suykens K., Kone Y. J. M., Shadwick E. H., Prowe A. E. F., Bozec Y., de Baar H. J. W., Borges A. V., 2009, Enhanced ocean carbon storage from anaerobic alkalinity generation in coastal sediments, Biogeosciences, 6, 267-274, http://dx.doi.org/10.5194/bg-6-267-2009
  • [37]. Uścinowicz S., 2011, Geochemistry of the Baltic Sea surface sediments, Polish Geolog. Inst.-National Res. Inst., Warsaw, 138-145.
  • [38]. Viventsova E. A., Voronov A. N., 2003, Groundwater discharge to the Gulf of Finland (Baltic Sea): ecological aspects, Environ. Ecol., 45, 221-225. Wasmund N., Uhlig S., 2003, Phytoplankton trends in the Baltic Sea, J. Marine Syst., 60, 177-186.
  • [39]. Zektser I. S., Loaiciga H.A., 1993, Groundwater fluxes in the global hydrologic cycle: past, present and future, J. Hydrol., 144, 405-427, http://dx.doi.org/10.1016/0022-1694(93)90182-9
  • [40]. Zekster I. S., Everett L. G., Dzhamalov R. G., 2007, Submarine groundwater, CRS Press, Boca Raton.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8be5b99b-7992-4d82-a069-c7d728b97584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.