PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of rotational speed of a self-aspirating mixer on oxygen saturation in water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are two categories of gas-liquid mixers: conventional and special-purpose. In theory, any conventional mixer can be applied to aerate a liquid, but fast-rotating devices are generally preferred. Special-purpose mixers (tubular, prismatic, cylindrical) have a hollow shaft, and operate by drawing gas from above the surface of the liquid and dispersing it inside the liquid. This process is referred to as aspirated aeration. In contrast, conventional mixers increase the pressure of the aspirated gas. Gas drawn from above the surface of the liquid flows through channels bored inside the shaft and the impeller, and is introduced to the liquid in this way. This article presents the results of an experiment investigating the aeration efficiency of a six-tube self-aspirating mixer at different rotational speeds. The experiment was conducted in a flow tank. The results indicate that self-aspirating mixers are effective devices for water aeration and mixing.
Słowa kluczowe
Rocznik
Tom
Strony
182--188
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn, Poland
  • University of Warmia and Mazury in Olsztyn, Michała Oczapowskiego 2, 10-719 Olsztyn, Poland
Bibliografia
  • 1. Gamo, T. (2011): Dissolved oxygen in the bottom water of the Sea of Japan as a sensitive alarm for global climate change. TrAC Trends in Analytical Chemistry, 30(8), 1308-1319.
  • 2. Topcu, H. D., Brockmann, U. H. (2015): Seasonal oxygen depletion in the North Sea, a review. Marine Pollution Bulletin, 99(1-2), 5-27.
  • 3. Stigebrandt, A., Kalén, O. (2013): Improving oxygen conditions in the deeper parts of Bornholm Sea by pumped injection of winter water. Ambio, 42(5), 587-595.
  • 4. Mostefa, G., Ahmed, K. (2012): Treatment of water supplies by the technique of dynamic aeration. Procedia Engineering, 33, 209-214.
  • 5. Stigebrandt, A., Liljebladh, B., De Brabandere, L., Forth, M., Granmo, Å., Hall, P., ... Norén, F. (2015): An experiment with forced oxygenation of the deepwater of the anoxic By Fjord, Western Sweden. Ambio, 44(1), 42-54.
  • 6. Grochowska, J., Gawronska, H. (2004): Restoration effectiveness of a degraded lake using multi-year artificial aeration. Polish Journal of Environmental Studies, 13(6).
  • 7. Wang, J., Liu, X. D., Lu, J. (2012): Urban river pollution control and remediation. Procedia Environmental Sciences, 13, 1856-1862.
  • 8. Anielak, A. M. (2015): Wysokoefektywne metody oczyszczania wody.
  • 9. Salgot, M., Folch, M. (2018): Wastewater treatment and water reuse. Current Opinion in Environmental Science Health.
  • 10. Ribeiro, A. R., Nunes, O. C., Pereira, M. F., Silva, A. M. (2015): An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. Environment International, 75, 33-51.
  • 11. Matilainen, A., Sillanpää, M. (2010): Removal of natural organic matter from drinking water by advanced oxidation processes. Chemosphere, 80(4), 351-365.
  • 12. Kanakaraju, D., Glass, B. D., Oelgemöller, M. (2018): Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189-207.
  • 13. Dewil, R., Mantzavinos, D., Poulios, I., Rodrigo, M. A. (2017): New perspectives for advanced oxidation processes. Journal of Environmental Management, 195, 93-99.
  • 14. Oller, I., Malato, S., Sánchez-Pérez, J. (2011): Combination of advanced oxidation processes and biological treatments for wastewater decontamination—A review. Science of the Total Environment, 409(20), 4141-4166.
  • 15. Särkkä, H., Bhatnagar, A., Sillanpää, M. (2015): Recent developments of electro-oxidation in water treatment—A review. Journal of Electroanalytical Chemistry, 754, 46-56.
  • 16. Kumar, A., Nidheesh, P. V., Kumar, M. S. (2018): Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes. Chemosphere, 205, 587-593.
  • 17. Roksela, M., Heidrich, Z. (2017): Energochłonność napowietrzania w procesie osadu czynnego. Gaz, Woda i Technika Sanitarna.
  • 18. Asadi, A., Verma, A., Yang, K., Mejabi, B. (2017): Wastewater treatment aeration process optimization: A data mining approach. Journal of Environmental Management, 203, 630-639.
  • 19. Daskiran, C., Riglin, J., Schleicher, W. C., Oztekin, A. (2018): Computational study of aeration for wastewater treatment via ventilated pump-turbine. International Journal of Heat and Fluid Flow, 69, 43-54.
  • 20. Kalenik, M., Wichowski, P., Morawski, D., Chalecki, M. (2017): Kinetics of water oxygenation in pipe aerator. Infrastruktura i Ekologia Terenów Wiejskich.
  • 21. Marsidi, N., Hasan, H. A., Abdullah, S. R. S. (2018): A review of biological aerated filters for iron and manganese ions removal in water treatment. Journal of Water Process Engineering, 23, 1-12.
  • 22. Bao, T., Chen, T., Wille, M. L., Chen, D., Bian, J., Qing, C., ... Frost, R. L. (2016): Advanced wastewater treatment with autoclaved aerated concrete particles in biological aerated filters. Journal of Water Process Engineering, 9, 188-194.
  • 23. Kujawiak, S., Gawrońska, A., Matz, R., Makowska, M. (2017): Efektywność procesu napowietrzania w reaktorach barbotażowych ze złożem ruchomym. CzasopismoTechniczne, 2017 (Volume 3).
  • 24. Boog, J., Nivala, J., Aubron, T., Mothes, S., van Afferden, M., Müller, R. A. (2017): Resilience of carbon and nitrogen removal due to aeration interruption in aerated treatment wetlands. Science of The Total Environment, 621, 960-969.
  • 25. Freeman, A. I., Surridge, B. W., Matthews, M., Stewart, M., Haygarth, P. M. (2018): New approaches to enhance pollutant removal in artificially aerated wastewater treatment systems. Science of the Total Environment, 627, 1182-1194.
  • 26. Shukla, B. K., Goel, A. (2018): Study on oxygen transfer by solid jet aerator with multiple openings. Engineering Science and Technology: An International Journal, 21(2), 255-260.
  • 27. Shukla, B. K., Khan, A., Saikiran, G., Sriram, M. A. (2019) Comparative study on effect of variation in opening shape on oxygenation performance of surface jet aerators used in water and wastewater treatment. Journal of Green Engineering, 9(3), 427-440.
  • 28. Ghotli, R. A., Shafeeyan, M. S., Abbasi, M. R., Raman, A. A. A., Ibrahim, S. (2020): Macromixing study for various designs of impellers in a stirred vessel. Chemical Engineering and Processing - Process Intensification, 148, 107794.
  • 29. Adel, M., Shaalan, M. R., Kamal, R. M., El Monayeri, D. S. (2019): A comparative study of impeller aerators configurations. Alexandria Engineering Journal, 58(4), 1431-1438.
  • 30. Du, Y., Chen, F., Zhou, L., Qiu, T., Sun, J. (2020): Effects of different layouts of fine-pore aeration tubes on sewage collection and aeration in rectangular water tanks. Aquacultural Engineering, 102060.
  • 31. Jegatheeswaran, S., Kazemzadeh, A., Ein-Mozaffari, F. (2019): Enhanced aeration efficiency in non-Newtonian fluids using coaxial mixers: High-solidity ratio central impeller with an anchor. Chemical Engineering Journal, 378, 122081.
  • 32. Rzyski, E., Stelmach, J. (2005): Napowietrzanie z użyciem mieszadła ze zwiniętymi śrubowo łopatkami wstęgowymi. Inżynieria i Aparatura Chemiczna, (5s), 58-62.
  • 33. Stelmach, J. (2006): Efektywność mieszadeł turbinowotarczowych z kierownicą. Przemysł Chemiczny, 85(8-9), 1150-1153.
  • 34. Heim, A., Stelmach, J. (2009): Porównanie efektywności wnikania masy dla mieszadeł z napowietrzaniem bełkotkowym. Rocznik Ochrona Środowiska, 11, 207-219.
  • 35. Rieger, F., Jirout, T., Stelmach, J. (2017): Wpływ modyfikacji mieszadła z łamanymi łopatkami na efektywność mieszania. Przemysł Chemiczny, 96.
  • 36. Suschka J., Zieliński J. (1979): Grajcar E. Urządzenia do natleniania ścieków. Warszawa, Wydawnictwo Arkady.
  • 37. Burgan, H.I., Aksoy, H. (2020): Monthly flow duration curve model for ungauged river basins. Water, 12, 338.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bd9b934-589e-4dcf-bf31-09d54fda8cda
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.