Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The one dimensional PT (parity time) symmetric four-layer Bragg grating with gain and loss saturation effects is analyzed taking into account the evolution of the field amplitudes. The investigated structure has modulated real and imaginary parts of refractive index. The functional configurations of the Bragg grating have been considered, showing the behavior of this structure acting as a discrete device and as a component of an integrated circuit. The obtained characteristics illustrate the influence of the saturation effect on the intensity of the output wave at a given intensity of the incident plane wave for different values of gain and loss saturation intensities of the PT structure. The performed analysis shows the bistability of the structure and a strong influence of the incident wave intensity on the properties of light propagation nonreciprocity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
329--344
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
- Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] BENDER C.M., BOETTCHER S., Real spectra in non-Hermitian Hamiltonians having PT symmetry, Physical Review Letters 80(24), 1998, pp. 5243–5246, DOI: 10.1103/PhysRevLett.80.5243.
- [2] LIN Z., RAMEZANI H., EICHELKRAUT T., KOTTOS T., CAO H., CHRISTODOULIDES D.N., Unidirectional invisibility induced by PT-symmetric periodic structures, Physical Review Letters 106(21), 2011, 213901, DOI: 10.1103/PhysRevLett.106.213901.
- [3] SUN Y., TAN W., LI H., LI J., CHEN H., Experimental demonstration of a coherent perfect absorber with pt phase transition, Physical Review Letters 112(14), 2014, 143903, DOI: 10.1103/PhysRevLett.112.143903.
- [4] MAKRIS K.G., EL-GANAINY R., CHRISTODOULIDES D.N., MUSSLIMANI Z.H., Beam dynamics in PT symmetric optical lattices, Physical Review Letters 100(10), 2008, 103904, DOI: 10.1103/PhysRevLett.100.103904.
- [5] EL-GANAINY R., MAKRIS K.G., CHRISTODOULIDES D.N., MUSSLIMANI Z.H., Theory of coupled optical PT-symmetric structures, Optics Letters 32(17), 2007, pp. 2632–2634, DOI: 10.1364/OL.32.002632.
- [6] HEINRICH M., MIRI M.-A., KHAJAVIKHAN M., CHRISTODOULIDES D.N., PT symmetry in optics and nonlinear optics, Proceedings of 2015 European Conference on Lasers and Electro-Optics – European Quantum Electronics Conference, June 21–25, 2015, Munich, Germany, paper CD_3_4.
- [7] PHANG S., VUKOVIC A., SUSANTO H., BENSON T.M., SEWELL P., Ultrafast optical switching using paritytime symmetric Bragg gratings, Journal of the Optical Society of America B 30(11), 2013, pp. 2984–2991, DOI: 10.1364/JOSAB.30.002984.
- [8] KULISHOV M., LANIEL J.M., BÉLANGER N., AZAÑA J., PLANT D.V., Nonreciprocal waveguide Bragg gratings, Optics Express 13(8), 2005, pp. 3068–3078, DOI: 10.1364/OPEX.13.003068.
- [9] KULISHOV M., KRESS B., JONES H.F., Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating, Optics Express 22(19), 2014, pp. 23164–23181, DOI: 10.1364/OE.22.023164.
- [10] GE L., EL-GANAINY R., Nonlinear modal interactions in parity-time (PT) symmetric lasers, Scientific Reports 6, 2016, 24889, DOI: 10.1038/srep24889.
- [11] MOSSAKOWSKA-WYSZYŃSKA A., NIEDŹWIEDZIUK P., WITOŃSKI P., SZCZEPAŃSKI P., Analysis of light generation in laser with PT-symmetric mirror, Proceedings Advanced Photonics 2018, July 2–5, 2018, Zurich, Switzerland, paper JTu5A.50, DOI: 10.1364/BGPPM.2018.JTu5A.50.
- [12] WITOŃSKI P., MOSSAKOWSKA-WYSZYŃSKA A., SZCZEPAŃSKI P., Effect of nonlinear loss and gain in multilayer PT-symmetric Bragg grating, IEEE Journal of Quantum Electronics 53(6), 2017, 8063405, DOI: 10.1109/JQE.2017.2761380.
- [13] SMIT M., WILLIAMS K., VAN DER TOL J., Past, present, and future of InP-based photonic integration, APL Photonics 4(5), 2019, 050901, DOI: 10.1063/1.5087862.
- [14] SOARES F.M., BAIER M., GAERTNER T., GROTE N., MOEHRLE M., BECKERWERTH T., RUNGE P., SCHELL M., InP-based foundry PICs for optical interconnects, Applied Sciences 9(8), 2019, 1588, DOI: 10.3390/app9081588.
- [15] Indium Phosphide PICs, 100G Optical Components, Coherent, PIC, DWDM, <https://www.neophotonics.com/technology/indium-phosphide-pics/> (accessed May 23, 2019).
- [16] PHANG S., Theory and numerical modelling of parity-time symmetric structures for photonics, 2016, <http://eprints.nottingham.ac.uk/32596/> (accessed November 30, 2018).
- [17] MOSSAKOWSKA-WYSZYŃSKA A., WITOŃSKI P., SZCZEPAŃSKI P., Transmission properties analysis of 1D PT-symmetric photonic structures, Proc. SPIE 10175, Electron Technology Conference 2016, 101750T, DOI: 10.1117/12.2260706.
- [18] CHUSSEAU L., MARTIN P., BRASSEUR C., ALIBERT C., Carrier‐induced change due to doping in refractive index of InP: Measurements at 1.3 and 1.5 μm, Applied Physics Letters 69(20), 1996, pp. 3054–3056, DOI: 10.1063/1.116837.
- [19] FENG L., XU Y.-L., FEGADOLLI W.S., LU M.-H., OLIVEIRA J.E.B., ALMEIDA V.R., CHEN Y.-F., SCHERER A., Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies, Nature Materials 12(2), 2013, pp. 108–113, DOI: 10.1038/nmat3495.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bd8077b-040d-405b-be65-6f2ff988b3f0