PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructural and Mechanical Characterization of Solidified Austenitic Stainless Steels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Among the family of stainless steels, cast austenitic stainless steels (CASSs) are preferably used due to their high mechanical properties and corrosion resistance. These steels owe their properties to their microstructural features consisting of an austenitic matrix and skeletal or lathy type δ-ferrite depending on the cooling rate. In this study, the solidification behavior of CASSs (304L and 316L grades) was studied using ThermoCalc software in order to determine the solidification sequence and final microstructure during cooling. Theoretical findings were supported by the microstructural examinations. For the mechanical characterization, not only hardness measurements but also tribological studies were carried out under dry sliding conditions and worn surfaces were examined by microscopy and 3D profilometric analysis. Results were discussed according to the type and amount of microstructural features.
Rocznik
Strony
163--167
Opis fizyczny
Bibliogr. 9 poz., il., tab., wykr.
Twórcy
autor
  • Kocaeli University, Department of Metallurgical and Materials Engineering, Umuttepe Campus 41380 Kocaeli, Turkey
autor
  • Kocaeli University, Department of Metallurgical and Materials Engineering, Umuttepe Campus 41380 Kocaeli, Turkey
autor
  • Kocaeli University, Department of Metallurgical and Materials Engineering, Umuttepe Campus 41380 Kocaeli, Turkey
  • Thessaly University, Department of Mechanical Engineering, Laboratory of Materials, Volos, Greece
Bibliografia
  • [1] Chen, W.Y., Li, M., Kirk, M.A., Baldo, P.M. & Lian, T., (2016). Effect of heavy ion irradiation on microstructural evaluation in CF8 cast austenitic stainless steel. Journal of Nuclear Materials. 471, 184-192. DOI: 10.1016/ j.jnucmat.2015.08.032
  • [2] Cheon, J.S. & Kim, I.S. (2000). Evaluation of thermal aging embrittlement in CF8 duplex stainless steel by small punch test. Journal of Nuclear Materials. 278, 96-103.
  • [3] Li. M., Miller, M.K. & Chen, W-Y. (2015). Phase stability in thermally-aged CASS CF8 under heavy ion irradiation. Journal of Nuclear Materials. 462, 214-220. DOI: 10.1016/ j.jnucmat.2015.03.034.
  • [4] Jang, H., Hong, S., Jang, C. & Lee, J.G. (2014). The effects of reversion heat treatment on the recovery of thermal aging embrittlement of CF8M cast stainless steels. Materials and Design. 56, 517-521. DOI: 10.1016/j.matdes.2013.12.010.
  • [5] Fu, J.W., Yang, Y.S., Guo, J.J., Ma, J.C. & Tong, W.H. (2009). Microstructure evolution in AISI 304 stainless steel during near rapid directional solidification. Materials Science and Technology. 25, 1013-1016. DOI: 10.1179/ 174328408X317093.
  • [6] Inoue, H. & Koseki, T. (2017). Solidification mechanism of austenitic stainless steels solidified with primary ferrite. Acta Materialia. 124, 430-436. DOI: 10.1016/ j.actamat.2016.11.030.
  • [7] Hunter, A. & Ferry, M. (2002). Phase formation during solidification of AISI 304 austenitic stainless steel. Scripta Materialia. 46, 253-258.
  • [8] Holmberg, K. & Matthews, A. (2009). Coatings tribology, properties, mechanisms, techniques and applications in surface engineering. (2nd ed.). Oxford: Elsevier.
  • [9] Totten G.E. (2006). Steel heat treatment handbook. (2nd ed.). London: Taylor & Francis Group.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bd7d3ab-89dc-4fb7-a100-67edeafd2642
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.