PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A 4-link model of a human for simulating a forward fall

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider a 4-link model of a human for simulating a forward fall. The model implemented in Mathematica is constructed based on a planar mechanical system with a non-linear impact law modelling the wrist-ground contact. The segments of the human body are modelled as bodies connected by rotary elements which correspond to the human joints. Parameters and kinematic relations used in numerical analysis are obtained based on the 3D scanned model of the human body created in Inventor and experimental observation by the motion capture system. Validation of the model is conducted by means of comparing the simulation of the impact force with the experimental data obtained from the force platform. The obtained ground reaction forces can be useful for the finite element analysis of the numerical model of the human upper extremity.
Rocznik
Tom
Strony
art. no. 2018008
Opis fizyczny
Bibliogr. 18 poz., il. kolor., rys., wykr.
Twórcy
autor
  • Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, 1/15 Stefanowski Str., 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, 1/15 Stefanowski Str., 90-924 Lodz, Poland
autor
  • Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, 1/15 Stefanowski Str., 90-924 Lodz, Poland
  • Lodz University of Technology, Department of Automation, Biomechanics and Mechatronics, 1/15 Stefanowski Str., 90-924 Lodz, Poland
Bibliografia
  • 1. M. J. H. Heijnen, S. Rietdyk, Falls in young adults: Perceived causes and environmental factors assessed with a daily online survey, Hum. Movement Sci., 46 (2016) 86 - 95.
  • 2. S. N. Robinovitch, F. Feldman, Y. Yang, R. Schonnop, P. M. Leung, T. Sarraf, et al, Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study, Lancet, 381 (2013) 47 - 54.
  • 3. M. C. Nevitt, S. R. Cummings, Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures, J. Am. Geriatr. Soc., 41 (1993) 1226 - 1234.
  • 4. M. Palvanen, P. Kannus, J. Parkkari, T. Pitkajarvi, M. Pasanen, I. Vuori, M. Jarvinen, The injury mechanisms of osteoporotic upper extremity fractures among older adults: a controlled study of 287 consecutive patients and their 108 controls, Osteoporosis Int., 11 (2000) 822 - 831.
  • 5. O. Johnell, J. A. Kannis, An estimate of the worldwide prevalence and disability associated with osteoporotic fractures, Osteoporosis Int., 17 (2006) 1726 - 1733.
  • 6. J. A. Spadaro, F. W. Werner, R. A. Brenner, M. D. Fortino, L. A. Fay, W. T. Edwards, Cortical and trabecular bone contribute strength to the osteopenic distal radius, J. Orthop. Res., 12 (1994) 211 - 218.
  • 7. K.-J. Kim, J. A. Ashton-Miller, Segmental dynamics of forward fall arrests: A system identification approach, Clin. Biomech., 24 (2009) 348 - 354.
  • 8. T. A. Burkhart, D. M. Andrews, C. E. Dunning, Multivariate injury risk criteria and injury probability scores for fractures to the distal radius, J. Biomech., 46 (2013) 973 - 978.
  • 9. J. Chiu, S. N. Robinovitch, Prediction of upper extremity impact forces during falls on the outstretched hand, J. Biomech., 31 (1998) 1169 - 1176.
  • 10. K. M. DeGoede, J. A. Ashton-Miller, Biomechanical simulations of forward fall arrests: effects of upper extremity arrest strategy, gender and aging-related declines in muscle strength, J. Biomech., 36 (2003) 413 - 420.
  • 11. S. Lehner, T. Geyer, F. I. Michel, K. U. Schmitt, V. Senner, Wrist injuries in snowboarding - Simulations of a worst case scenario of snowboard falls, Procedia Engineer., 72, (2014) 255 - 260.
  • 12. M. Silva, R. Barbosa, T. Castro, Multi-legged walking robot modelling in MATLAB/SimmechanicsTM and its simulation, Proceedings of the 2013 8th EUROSIM Congress on Modelling and Simulation, EUROSIM 2013, 10-13 September 2013, Cardiff, Wales, 226 - 231.
  • 13. G. T. Yamaguchi, Dynamic modelling of musculoskeletal motion, Springer-Science+Business Media, B.V., 2001.
  • 14. F. C. Anderson, M. G. Pandy, Dynamic optimization of human walking, J. Biomech. Eng., 123 (2001) 381 - 390.
  • 15. R. R. Neptune, I. C. Wright, A. J. van den Bogert, A method for numerical simulation of single limb ground contact events: application to heel-toe running, Comput. Method Biomec., 3 (2000) 321 - 334.
  • 16. K. G. M. Gerritsen, A. J. van den Bogert, B. M. Nigg, Direct dynamics simulation of the impact phase in heel-toe running, J. Biomech., 28 (1995) 661 - 668.
  • 17. D. Grzelczyk, P. Biesiacki, J. Mrozowski, J. Awrejcewicz,, Dynamic simulation of a novel "broomstick" human forward fall model and finite element analysis of the radius under the impact force during fall, J. Theor. Appl. Mech., 56 (2018) 239 - 253.
  • 18. P. Biesiacki, J. Mrozowski, D. Grzelczyk, J. Awrejcewicz, Modelling of forward fall on outstretched hands as a system with ground contact, DYNAMICAL SYSTEMS: MODELLING Book Series: Springer Proceedings in Mathematics & Statistics, 181 (2016) 61 - 72.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bc97def-dc96-4619-8934-7181f0920814
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.