PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mechanical energy absorption capacity of the porous Ti-6AI-4V alloy under quasi-static and dynamic compression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Porous materials are extremely efficient in absorbing mechanical energy in different applications. In the present study, porous materials based on the Ti-6(wt.%)Al-4V alloy were manufactured with the use of two different powder metallurgy methods: i) blended elemental powder approach using titanium hydride (TiH2) as well as V-Al master alloy powders and ii) using hydrogenated Ti-6-4 pre-alloyed powder. The powder compacts were sintered with additions of ammonium bicarbonate as a pore-holding removable agent. The emission of hydrogen from hydrogenated powders on vacuum sintering and the resulting shrinkage of powder particles permitted the control of the sintering process and the creation of anticipated porous structures. Mechanical characteristics were evaluated under quasi-static and dynamic compressive loading conditions. Dynamic compression tests were performed using the direct impact Hopkinson pressure bar technique. All investigations aimed at characterizing the mechanical energy-absorbing ability of the obtained porous structures. The anticipated strength, plasticity, and energyabsorbing characteristics of porous Ti-6-4 material were evaluated, and the possibilities of their application were also discussed. Based on the obtained results, it was found that porous Ti-6-4 material produced with a blended elemental powder approach showed more promising energy absorption properties in comparison with pre-alloyed powder.
Rocznik
Strony
art. no. e151959
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • G.V. Kurdyumov Institute for Metal Physics of NAS of Ukraine, 36, Vernadsky Blvd., 03142, Kyiv, Ukraine
  • Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00–908 Warsaw 46, Poland
  • G.V. Kurdyumov Institute for Metal Physics of NAS of Ukraine, 36, Vernadsky Blvd., 03142, Kyiv, Ukraine
  • G.V. Kurdyumov Institute for Metal Physics of NAS of Ukraine, 36, Vernadsky Blvd., 03142, Kyiv, Ukraine
  • G.V. Kurdyumov Institute for Metal Physics of NAS of Ukraine, 36, Vernadsky Blvd., 03142, Kyiv, Ukraine
  • Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00–908 Warsaw 46, Poland
Bibliografia
  • [1] J.B. Manufacture, “Characterization and application of cellular metals and metal foams,” Prog. Mater. Sci., vol. 46, pp. 559–632, 2001, doi: 10.1016/S0079-6425(00)00002-5.
  • [2] D. Jafari et al., “Porous materials additively manufactured at low energy: Single-layer manufacturing and characterization,” Mater. Des., vol. 191, p. 108654, 2020, doi: 10.1016/j.matdes.2020.108654.
  • [3] S.Y. Chena et al., “Microstructure and fracture properties of open-cell porous Ti-6Al-4V with high porosity fabricated by electron beam melting,” Mater. Charact., vol. 138, pp. 255–262, 2018, doi: 10.1016/j.matchar.2018.02.016.
  • [4] M. Kobashi, Sh. Miyake, and N. Kanetake, “Hierarchical open cellular porous TiAl manufactured by space holder process,” Intermetallics, vol. 42, pp. 32–34, 2013, doi: 10.1016/j.intermet.2013.04.017.
  • [5] B. Ye and D.C. Dunand, “Titanium foams produced by solid-state replication of NaCl powders,” Mater. Sci. Eng. A, vol. 628, pp. 691–697, 2010, doi: 10.1016/j.msea.2010.09.054.
  • [6] N. Takata, K. Uematsu, and M. Kobashi, “Compressive properties of porous Ti–Al alloys fabricated by reaction synthesis using a space holder powder,” Mater. Sci. Eng. A, vol. 697, pp. 66–70, 2017, doi: 10.1016/j.msea.2017.05.015.
  • [7] A. Dmitruk et al., “Experimental and Numerical Study of Ballistic Resistance of Composites Based on Sandwich Metallic Foams,” Appl. Compos. Mater., vol. 28, pp. 2011–2044, 2021, doi: 10.1007/s10443-021-09957-0.
  • [8] S. Gaitanaros and S. Kyriakides, “On the effect of relative density on the crushing of open-cell foams under impact and energy absorption,” Int. J. Impact Eng., vol. 82, p. 3e13, 2015, doi: 10.1016/j.ijimpeng.2015.03.011.
  • [9] X.X. Zhang, H.W. Hou, L.S. Wei, Z.X. Chen, W.T. Wei, and L. Geng, “High damping capacity in porous NiTi alloy with bimodal pore architecture,” J. Alloy. Compd., vol. 550, pp. 297–301, 2013, doi: 10.1016/j.jallcom.2012.09.145.
  • [10] Y. Arakawa, M. Kobashi, and N. Kanetake, “Foaming behavior of long-scale Al-Ti intermetallic foam by SHS mode combustion reaction,” Intermetallics, vol. 41, pp. 22–27, 2013, doi: 10.1016/j.intermet.2013.04.004.
  • [11] A. Suzuki, N. Kosugi, N. Takata, and M. Kobashi, “Microstructure and compressive properties of porous hybrid materials consisting of ductile Al/Ti and brittle Al3Ti phases fabricated by reaction sintering with space holder,” Mater. Sci. Eng. A, vol. 776, no. 3, p. 139000, 2020, doi: 10.1016/j.msea.2020.139000.
  • [12] P.E. Markovsky, J. Janiszewski, O.O. Stasyuk, D.G. Savvakin, D.V. Oryshych, and P. Dziewit, “Mechanical energy absorption ability of titanium-based porous structures produced by various powder metallurgy approaches,” Materials, vol. 16, pp. 3530, 2023, doi: 10.3390/ma16093530.
  • [13] Y.G. Wang, J. Tao, J.L. Zhang, and T. Wang, “Effects of addition of NH4HCO3 on pore characteristics and compressive properties of porous Ti-10%Mg composites,” Trans. Nonferrous Met. Soc. China, vol. 21, no. 5, pp. 1074–1079, 2011, doi: 10.1016/S1003-6326(11)60824-8.
  • [14] O.M. Ivasishin, V.M. Anokhin, A.N. Demidik, and D.G. Savvakin, “Cost-Effective Blended Elemental Powder Metallurgy of Titanium Alloys for Transportation Application,” Key Eng. Mater., vol. 188, pp. 55–62, 2000, doi: 10.4028/www.scientific.net/KEM.188.55.
  • [15] O.M. Ivasishin and V.S. Moxson, “Low cost titanium hydride powder metallurgy,” in Titanium Powder Metallurgy, Science, Technology and Applications, M. Qian and S.H. Froes, Eds., Elsevier, 2015, Ch. 8, pp. 117–148, doi: 10.3390/met10050682.
  • [16] J. Liu, S. He, H. Zhao, G. Li, M. Wang, “Experimental investigation on the dynamic behaviour of metal foam: from yield to densification,” Int. J. Impact Eng., vol. 114, pp. 69–77, 2018, doi: 10.1016/j.ijimpeng.2017.12.016.
  • [17] Y. Duan, B. Du, X. Shi, B. Hou, and Y. Li, “Quasi-static and dynamic compressive properties and deformation mechanisms of 3D printed polymeric cellular structures with kelvin cells,” Int. J. Impact Eng., vol. 132, p. 103303, 2019, doi: 10.1016/j.ijimpeng.2019.05.017.
  • [18] B.T. Cao et al., “On the influence of the property gradient on the impact behavior of graded multilayer sandwich with corrugated cores”. Int. J. Impact Eng., vol. 113, pp. 98–105, 2018, doi: 10.1016/j.ijimpeng.2017.11.017.
  • [19] G. Lutjering and J.C. Williams, Titanium, 2𝑛𝑑 Ed., 2007, Berlin Heidelberg, New York: Springer, p. 438.
  • [20] D. Chen, S. Kitipornchai, and J. Yang, “Dynamic response and energy absorption of functionally graded porous structures,” Mater. Des., vol. 140, no. 15. pp. 473–487, 2018, doi: 10.1016/j.matdes.2017.12.019.
  • [21] Y. Qiao et al., “Corrosion and Tensile Behaviors of Ti-4Al-2V-1Mo-1Fe and Ti-6Al-4V Titanium Alloys,” Metals, vol. 9, no. 11, p. 1213, 2019, doi: 10.3390/met9111213.
  • [22] B.G. Kutchko and A.G. Kim, “Fly ash characterization by SEM–EDS,” Fuel, vol. 85, pp. 2537–2544, 2006, doi: 10.1016/j.fuel.2006.05.016.
  • [23] X. Wang, J. Li, R. Hu, H. Kou, and L. Zhou, “Mechanical properties of porous titanium with different distributions of pore size,” Trans. Nonferrous Met. Soc. China, vol. 23, pp. 2317–2322, 2013, doi: 10.1016/S1003-6326(13)62735-1.
  • [24] A. Aslan, B. Aksakal, and F. Findik, “Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications,” J. Mater. Sci.-Mater. Med., vol. 32, p. 80, 2021, doi: 10.1007/s10856-021-06546-2.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bc5196f-7075-4015-abd3-c880c3b71fe6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.