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Abstract. Let ¢ > 1. The paper considers a linear g¢-difference-differential equation: it
is a g¢-difference equation in the time variable ¢, and a partial differential equation in the
space variable z. Under suitable conditions and by using g-Borel and g-Laplace transforms
(introduced by J.-P. Ramis and C. Zhang), the authors show that if it has a formal power
series solution X (¢, z) one can construct an actual holomorphic solution which admits X (¢, z)
as a g-Gevrey asymptotic expansion of order 1.
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1. INTRODUCTION

Let m > 1 be an integer, and let (¢, 2) = (¢, 21, ..., z4) € C; x C? be complex variables.
For r > 0 we write D, = {t € C; |[t| <r} and D} ={t € C; 0 < |t| <r}. For R > 0
we write Dp = {2z € C¢; |2| < R} with |z| = max;<;<4 |2:|. We denote by Og the set
of all holomorphic functions in a neighbourhood of Dg, and by Og|[t]] the set of all
formal power series in ¢ with coefficients in Og.

For a holomorphic function f(¢, ) in a neighbourhood of (0,0) € C; x C4, we define
the order of the zeros of the function f(¢, z) at ¢ = 0 ( we denote this by ord:(f)) by

ord;(f) = min{k € N; (87 f)(0,2) Z 0 near z = 0},

where N ={0,1,2,...}.
Let us consider the linear partial differential equation

> aalt, 2)(t0) 07X = F(t, 2) (1.1)

Jtlal<m
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with the unknown function X = X (¢, z), where a; o(t, 2) (j+|a| < m) and F(t, z) are
holomorphic functions in a neighbourhood of (0,0) € C; x C4. The Newton polygon
N(1.1) of (1.1) is defined by

N(1.1) = the convex hull of U C(j + |a|,ordi(aj,a))

J+|al<m

in R?, where C(a,b) = {(z,y) € R?; 2 < a,y > b}. See Miyake [8] and Ouchi [10]
(though Ouchi used the word “the characteristic polygon” instead of “the Newton
polygon”). Let us consider the following two cases:

Case 1. N(1.1) = {(z,y) € R*; 2 <m, y > 0}.
Case 2. There is an integer 0 < mg < m such that

N(L.1) = {(z,y) € R?; 2 < m, y > max{0,z — mo}}.
In Case 1, about the convergence of formal solutions of (1.1), by Baouendi-Goulaouic [1]
we have the following result.
Theorem 1.1. Suppose the condition in Case 1,
am0(0,0) #0, and ordi(aja) >1 if |af > 0.
Then, if (1.1) has a formal solution X (t,z) = Y >0 Xn(2)t" € ORgl[t]], it is conver-
gent in a neighbourhood of the origin (0,0) € C; x CZ.

In Case 2, even if (1.1) has a formal solution, it is not convergent in general, but we
can give a meaning to this formal solution by using the notion of Borel summability.
By [10], we have the following theorem.

Theorem 1.2. Suppose the condition in Case 2,
am70(t, 0)

tm—mo  |i—0

Umg,0(0,0) # 0, # 0,

and
ord;(ajo) > max{l,j + |a| — mo + 1} if |a| > 0.

Then, if (1.1) has a formal solution X(t,z) = 3,50 Xn(2)t" € Og|[t]], it is Borel
summable in t (uniformly in z near z = 0) in a suitable direction.

Let ¢ > 1. For a function f(¢,z) we define the g-difference operator D, by

f(qt,z) — f(t,Z)

(Daf)(t:2) = R T

In this paper, we will try to g-discretize equation (1.1) with respect to the time
variable ¢ in the form

> aja(t,2)(tD) 07X = F(t,2), (1.2)

J+lal<m

and we will consider the following problem.
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Problem 1.3. Let X(t,2) = 3 ., X, (2)t" € Og|[t]] be a formal solution of (1.2).
Then: -

(1) (g-analogue of Theorem 1.1) Under what condition can we get the convergence of
the formal solution X (¢, z)?

(2) (g-analogue of Theorem 1.2) Under what condition can we get a true solution
W(t,z) of (1.2) which admits X(¢,z) as a ¢-Gevrey asymptotic expansion of
order 1 (in the sense of Definition 1.4 given below)?

For A € C\ {0} and € > 0, we set
H={-X"€C;meZ}
Pe=|J{teC\{0}; 1+ Ag"/t] <€}

meEZ

It is easy to see that if € > 0 is sufficiently small the set 2 . is a disjoint union of
closed disks. The following definition is due to Ramis-Zhang [11].

Definition 1.4. Let X(t,z) = Y om0 Xn(2)t" € Ogl[t]] and let W(t, z) be a holo-
morphic function on (D} \ Z,) x Dg for some r > 0. We say that W (¢, z) admits

X(t, 2) as a g-Gevrey asymptotic expansion of order 1, if there are M > 0 and H > 0
such that
N-1
‘W(t,z) =) Xa(2)t"

n=0

MHN _
< qu(N 1)/2‘t|N (13)

holds on (D \ %, ) x Dg for any N =0,1,2,... and any sufficiently small € > 0.

To solve Problem 1.3 we will use the framework of g-Laplace and g¢-Borel
transforms via the Jacobi theta function, developed by Ramis-Zhang [11] and
Zhang [15]. In the case of g-difference equations (corresponding to ordinary differ-
ential equations), g-analogues of summability of formal solutions have been stud-
ied quite well by Zhang [14], Marotte-Zhang [7] and Ramis-Sauloy-Zhang [12]. In
the case of ¢-difference-differential equations, we have some references, Malek |5, 6],
Lastra-Malek [3] and Lastra-Malek-Sanz [4], but their equations are different from
ours.

2. MAIN RESULTS

Throughout this paper, we let ¢ > 1 be a real number, m > 1 be an integer, and o > 0
be a real number. As a generalization of (1.2), we will treat the following equation

> a0t 2)(tD) 07X = F(t,2) (2.1)

j+olal<m

with the unknown function X = X (¢, z), where a; (¢, 2) (j + ola] < m) and F(t,2)
are holomorphic functions in a neighbourhood of (0,0) € C; x C4.
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In this case, we will use the t-Newton polygon (see the paper by Tahara-Yamazawa
[13]): the t-Newton polygon N;(2.1) of equation (2.1) is defined by

N¢(2.1) = the convex hull of U C(j,orde(aj.q)).

j+olal<m

in R2. Let us consider the following two cases:

Case 1. N;(2.1) = {(z,y) € R*; x <m, y > 0}.
Case 2. There is an integer 0 < mg < m such that

Ni(2.1) = {(x,y) € R*; 2 < m, y > max{0,z — mg}}.
In Case 1, we can give a g-analogue of Theorem 1.1 in the following form:
Theorem 2.1. Suppose the condition in Case 1,
am,0(0,0) #0, and ordi(a;q) >1 if |a] > 0.
Then, if (2.1) has a formal solution X (t,z) = Y >0 Xn(2)t" € ORgl[t]], it is conver-
gent in a neighbourhood of the origin (0,0) € C; x C2.
Example 2.2. Let us consider
(LD,)"X = A()t + B(=)"(tD,) 92 X,

where A(z) and B(z) are holomorphic functions in a neighbourhood of z = 0. In the
case when |a| = 0, if j < m and p > 1 we can apply Theorem 2.1 to this equation.
In the case when |a| > 0, if j < m —1 and p > 1 we can apply Theorem 2.1 to this
equation. We note that for any || > 0 by setting o = 1/]a| > 0 we have j+ol|a] < m.

In Case 2, by assumption we have the expression
ij,o(t, Z) = tj_mobjyo(t, Z) for mg < i<m

for some holomorphic functions b; (¢, z) (mo < j < m) in a neighbourhood of (0,0) €
Ct x CZ. We set

_ bj’Q(O,Z) j—m am0,0(07z)
P(é-,Z) - Z Wg °+ (q _ 1)moqﬂ"L0(m0*1)/2 ’

mo<j<m

If the conditions am,,0(0,0) # 0 and b, 0(0,0) # 0 are satisfied, we see that P(,0)
is a polynomial of degree m — mg and it has m — mg non-zero roots 71, ..., Tm—my-
Then, the set S of singular directions is defined by

m—mo

S = U {tr;; t > 0}.
i=1

As to a g-analogue of Theorem 1.2, we have the following result.
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Theorem 2.3.

(1) Suppose the condition in Case 2,
Ume,0(0,0) #0, and ordi(ajq) > max{l,j —mo+ 1} if |of > 0.

Then, if (2.1) has a formal solution X (t,z) = Y ns0 Xn(2)t" € Ogl[t]], we can
find A >0, h>0and0< Ry <R such that | X,,(2)| < Ah"¢q"("=V/2 on Dy, for
anyn=0,1,2,

(2) In addition, if the conditions

amotO

tm mo

ord¢(aja) >j—mo+2, ifla|>0andmo<j<m

‘t o 7 0 (this is equivalent to by, 0(0,0) # 0),

are satisfied, for any A € C\ ({0}US) there are r >0, Ry > 0 and a holomorphic
solution W (t, z) of (2.1) on (D} \ Z\) x Dr, such that W (t, z) admits X (t,z) as
a q-Gevrey asymptotic expansion of order 1.

Example 2.4. Let 0 < mg < m and let us consider
(tDg)"™ X = A(2)t + 1" (tDy)" X + B(2)tP(tDy) 03 X

where A(z) and B(z) are holomorphic functions in a neighbourhood of z = 0. In the
case |a| =0, if 7 <m and p > max{1,j — mo + 1} we can apply Theorem 2.3 to this
equation. In the case |a| > 0, if j <m — 1 and p > max{1,j — mo + 2} we can apply
Theorem 2.3 to this equation. In both cases, S is given by

S={z=teV"cC;t>00=2rk/(m—mg),0<k<m—mg—1}.

The rest of this paper is organised as follows. In Section 3 we give a proof of
Theorem 2.1, in Section 4 we show part (1) of Theorem 2.3, and in Sections 5 and 6
we prove part (2) of Theorem 2.3.

By the definition of D,, we have

f(qt,z) — f(t,Z)

(thf)(t,Z)Z g1

If we define the operator o, by o(f)(t,2) = f(q¢t, z), we can rewrite equation (2.1)
to the following linear equation

> ajalt2)(g—1)(0g — 102X = F(t,2)

jtolal<m

which is written in the form

S @ (62)(0,) 00X = F(t,2) (2.2)

j+olal<m
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with
CGat)= Y awalt o) - 1>’“<’“.

><—1>’”‘, j+ola] <m.
j<k<meolal J

Therefore, in the proof of Theorems 2.1 and 2.3 in Sections 3-6 we will treat equation
(2.2) instead of the original equation (2.1). In the discussion, we will use the norm
llolls = max.|<, [¢(2)] and the following lemma.

Lemma 2.5. If a holomorphic function ¢(z) on Dg satisfies

forany 0<s <R,

A
P —
||SD||S — (R—S)a

for some A >0 and a > 0, we have the estimates

Ha ‘PH < (a+1)eA
Z4 S_(

(R—s)"T forany 0<s<Randi=1,...,d.
—s

For the proof, see [9] or Lemma 5.1.3 in [2].

3. PROOF OF THEOREM 2.1

Let us consider the equation
Z aj.o(t,2) (o)) 02X = F(t, 2), (3.1)
jtolal<m

where a; (¢, 2) (j +ola| < m) and F(t, z) are holomorphic functions in a neighbour-
hood of (0,0) € C; x CZ. To prove Theorem 2.1 it is enough to show the following
proposition.

Proposition 3.1. Suppose the conditions

am,0(0,0) #0, and ordi(a;q) >1 if |a > 0. (3.2)
Then, if (3.1) has a formal solution X (t,z) = > ons0 Xn(2)t" € Ogl[t]], it is conver-
gent in a neighbourhood of the origin (0,0) € C; x CZ.
Proof. By the assumption, we can expand a; (¢, 2) (j + o|a| < m) and F(t, z) into

the forms:

ajolt,z) = Z ciok(2)th (0<j<m),
k>0

a’j’a(tﬂ Z) = Z Cj:a,k(z)tk (|a| > 0)7

k>1

F(t,z) = Z Fi(2)t".

k>0
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We may suppose that R > 0 is sufficiently small. Therefore, we may suppose
0 < R <1, that ¢;qx(2) and Fj(z) are all holomorphic functions on Dg, and that
there are B > 0 and h > 0 satisfying |c; a.x(2)| < Bh* (j + ola] <m and k > 1) and
|F).(2)] < BR* (k > 0) on Dg. Since a,,,0(0,0) # 0 is supposed, we may also assume
that a,0(0,2) # 0 on Dg. We set

C\2) = a;o(0,2)N.
j<m
It is clear that there are constant ¢y > 0 and a positive integer u such that
|C(g", 2)| > co(¢™)™ on Dg for any n > p. (3.3)

Since a;,0(0,2) = ¢;,0,0(2) (0 < j < m) holds, our equation (3.1) is written in the form

Clogp )X =F(t,2) = > > cianr(2)th (o) 02 X. (3.4)
jtola|<mk>1
Let
X(t,z) =) Xn(2)t" € Orllt]]

n>0

be a formal solution of (3.1). By substituting this into (3.4) and by comparing the
coeflicients of t" in both sides of the equation, we have the following recurrent formu-
las:

C(q°,2) X0 = Fo(2)
and for n > 1
Cl@" )Xo =Fu(z) = D Y cjan(x)(@)" " X, 4. (3.5)
Jjtola|<m k=1

We set L = m/o; if j + o|a| < m we have |a] < L. To prove Proposition 3.1 it is
enough to show the following lemma.

Lemma 3.2. There are A >0 and H > 0 such that the estimate

AH"
107 Xnlls <

S R—so)in forany 0 <s< R and |a] < L (3.6)

holds for any n=10,1,2,....
Proof of Lemma 3.2. Let p be as in (3.3). Since 09 X, (z) (n =0,1,...,pand |a| < L)

are holomorphic functions on Dpg, by taking A > 0 and H > 0 sufficiently large we
have the condition (3.6) for n =0,1,..., p.
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Let n > p, and suppose that (3.6) with n replaced by p is already proved for all
p < n. Then, by (3.3), (3.5) and the induction hypothesis, we have

< _ BR" + Z Z BRF(¢7)"F x AHim
~ colgh)™ (R — 5)L(n=F)

jtolaj<m 1<k<n

[ Xnlls

AH"

= (R o) Eo Do (g™ B(Z)n+ > 2 B<*> @) k}

jtola|<m1<k<n

and so, by Lemma 2.5, we have

AH el*l(L(n —1)+1)...(L(n —1) + o)
(R )L(n 1)+|o¢\co( )m

A T s ert] e

jtola|<m 1<k<n

102 Xnlls <

for any 0 < s < R. Here, we note that n/q¢°" — 0 (as n — ), and so n/q¢°" < ¢;
(n=1,2,...) hold for some ¢; > 1. Since

(L(n—1)4+1)...(L(n—1) 4 |a|) < (Ln)\al < L\al(c qrm)la\
holds, by applying this to (3.7) and by using (¢")7*l*l < (¢™)™ we have

R PO SOl

jtola|<m1<k<n

Thus, if A > B and H is sufficiently large with H > h, we have

IR Xy ()]

jtola|<m1<k<n

<) D e <

j+olal<m

This proves that if we take A > 0 and H > 0 sufficiently large we have the estimate
(3.6). This proves Lemma 3.2. O

Thus, we have proved Proposition 3.1. O

Example 3.3. Let A>0,B>0,meN, jeN peN* (={1,2,...}), a € N, and
let us consider

A .
(o)X = T t+ BtP(o,) 05X

This equation has a unique formal power series solution and it is given by

=Y 4B nqj @Y @Y )
= qp-‘,-l) . (qnp-i-l)m (1 _ z)na—H

It is easy to see that X(t, z) is convergent if and only if 7 < m — 1 holds: in this case,
by setting o = 1/a we have j + ca < m.
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4. PROOF OF (1) OF THEOREM 2.3

Let us consider the same equation (3.1) under the assumption that there is an integer
mg with 0 < mg < m such that

(4.1)

ords(aj o) > max{0,j —mg}, if |a] =0,
ordi(aj o) > max{l,j —mo+1}, if ja| >0

and that an,, 0(0,2) # 0 on Dy for some R > 0. We set
mo )
C(\z) = Zaj,o(o, z2) M

3=0

which is a polynomial of degree mg in A with holomorphic coefficients. Since the
condition am,, (0, z) # 0 is assumed, we have a constant ¢y > 0 and a positive integer
w such that
|C(g", )| > co(¢™)™ on Dg for any n > p. (4.2)
For simplicity, we set A = {(j,a) € Nx N¢; j + o|a] < m} and set L = m/o. We
have (7,0) € A for any j =0,1,...,m, and if (j,«) € A we have || < L. By condition
(4.1), we see that:

if j < mg and |a] =0, we have a;(t, 2) = a;,0(0,2) + tb; o(t, 2),
if mog < j <m and |a| =0, we have a;o(t, z) = t77™0b; o(t, 2),

if | > 0, we have a;o(t, 2) = tmax{bi=mot1lp. (¢ 2)

for some holomorphic functions b, (¢, 2) in a neighbourhood of (0,0) € C x C¢. By
setting
pjo =1, if 7 <mg and |a| =0,
Pj0 =J — mo, if mg <j<mand |a] =0, (4.3)
Pjo =max{l,j —mo+1}, if|a]>0

we see that our equation (3.1) is written in the form

Clog,2)X + > t72bjo(t,2)(0,) 05X = F(t, 2). (4.4)
(j,0)eA
Since |a|/L < 1 holds for any (j, &) € A, by the definition of p; o ((j,a) € A) we have
s Itlal/L=mo
Pj,a

1 (J,o) € AL (4.5)

To prove (1) of Theorem 2.3 it is enough to show the following result.

Proposition 4.1. Suppose the conditions (4.2), (4.3) and (4.5) hold. Then, if

X(t,z) = Z Xn(2)t" € Og[[t]]

n>0
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is a formal solution of (4.4), there are A >0, H > 0 and Ry > 0 such that
|Xn(2)| < AH"¢"™V/2 on Dgp,, n=0,1,2,.... (4.6)

Proof. By assumption, we can expand b; (¢, 2) ((, ) € A) and F(t, z) into the forms:

bjalt,z) = ijak ((4,) € N),

k>0

= Z Fk(z)tk

k>0

We may suppose that R > 0 is sufficiently small. Therefore, we may suppose
0 < R <1, that b, o x(2) and Fj(z) are all holomorphic functions on Dg, and that
there are B > 0 and h > 0 such that |b; o x(2)| < Bh* ((j,«) € A) and |Fy(z)| < Bh*
(k > 0) hold on Dp.

Let

ZX " € Og|[t]

be a formal solution of (4.4). By a calculation we have the following recurrent formulas:
C(qov Z)XO = FO(Z)
and for n > 1

Cq",2)Xn = Folz) — Y > b2 (@) TP Xy, (A7)

(4,0)EAO0<k<n—p; o

To prove Proposition 4.1 it is enough to show the following lemma.
Lemma 4.2. There are A > 0 and H > 0 such that the estimate

Aann(nfl)/Q

8aX7L S S T NI
105 Xalls < SR

forany 0 <s< R and |a| <L (4.8)

holds for any n=10,1,2,

Proof of Lemma 4.2. Let pbe as in (4.2). Since 09 X, (z) (n =0,1,...,pand |a| < L)
are holomorphic functions on Dpg, by taking A > 0 and H > 0 sufficiently large we
have condition (4.8) forn =0,1,..., u.

Let n > u, and suppose that (4.8) with n replaced by p is already proved for all
p < n. Since (4.2) is known, X,, can be expressed in the form

Xn = Xn,F + Z Xn,j,oz
(j,a)EA
where X, p and X, j o ((j,a) € A) are defined by C(¢", 2) X, r = F(2) and
C@" ) Xnja=— > biak@) @) P00 X, gy, .- (4.9)

0<k<n—pj o
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Then, if H > h we have

BR" AH™ B/ h\#
X, rlls < < 7(7) , 410
|| ,F” = Co(q”)mo = X A\H ( )
and by (4.2), (4.9) and the induction hypothesis we have
1 ;
1 Xnjalls < ——— Z BhFgn—F=pie)i
co(q")™e 0<k<n—p,

T e (4.11)

AHn_k_pj,a q(n_k_pj,a)(n_k_pj,a_1)/2
(R — S)L(”*k*pj,a)

We recall that by (4.5) we have p; o —j +mo > |a|/L and so

—nmo+ (n—k—=pja)jt+(n—k—pja)n—Fk—pj.—1)/2
=n(n—1)/2 = (k+pja—J+mo)(n—k—pja)
= (k+pja)(k+pja—1)/2=mo(k +pja)
<n(n—1)/2 = (pja —J+mo)(n —k —pja)
<n(n—1)/2—(la[/L)(n — k — pja).

By applying this to (4.11), we have

Aann(n—l)/Z 1 hyk 1
| X sialls < , _ B(%)
J CO(R — S)L(nfkfpj,a) q(‘al/L)(nfkpr,u) Ofkg—pjﬁa H HPi.e

and if H > 2h holds, we have

Aann(n—l)/Q 1 2B

: <
||Xn,J7a||S = CU(R _ S)L(nfkfpjva) q(\a|/L)(n7k7pj,Q) HPj,o

(4.12)

for any 0 < s < R.
Now, let us apply Lemma 2.5 to these estimates (4.10) and (4.12). Namely, for
any |a| < L, we have

nelal g1 ’ ngn(n-1)/2 L[y
AHm™el™|a! E(h)%<AHq eL.B(h

o
aXn s < Ead Tr .
102 X r | Vi B 9E X A H) (4.13)

~ co(R — s)lal X A

and

N Aann(nfl)/Z 2B
||az Xn,ja”s SCO(R — S)L(n—k—pg‘,a)ﬂal X Hrie X
MLk = pja) + 1) (L(n =k~ pja) + o))
q(lel/L)(n=k=p; o) '
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Since (n+1)/(¢"/*)™ — 0 (as n — oo) holds, we have the estimate (n+1) < ¢;(¢"/%)"
(n=0,1,2,...) for some ¢; > 0. Then,

e‘o‘|(L(n —k—pja)+1)...(Ln—k—pja)+|af)
q(\al/L)(n—k—pj.a)

elol(L(n = k = pja + 1)l
q(la\/L)(n*k*pj,a)

S (eLcl)Ialv

and so we have

Aann(n—l)/Q 2B

o]
O(R - S)L(nikfpj,a)“rlal X Hpj,a (eLC]_) @ (4.14)

192 X alle < -

for any 0 < s < R.
By (4.13) and (4.14), we have

Aann(n—l)/Z

a(XX’ﬂ Sg
o5 Xl < S

xC; forany 0<s< R

with

elLIB s h\# 2B
= — Le)lel,
G=— (H) + Z ot clen)
(J )N

Thus, if C; < 1 we can obtain the result (4.8). We note that if we take A > 0 and
H > 0 sufficiently large, we have the condition C; < 1. This completes the proof of

Lemma 4.2. O
Thus, by (4.8) (n =0,1,2,...), we have the condition (4.6). This proves Proposi-
tion 4.1. O

Example 4.3. Let A > 0, B > 0, p € N* and a > 0. The following equation is a
particular case of (4.4) with mg =0 and m = 1:

A
X = - t+to,X + B X.
—Z

This equation has a unique formal power series solution and we can apply Proposi-
tion 4.1 to this case. In the case p = 1 the formal solution is given by

. A A
R(t2) = 7—t+ > ((q1 +BO%) ... (¢" + BoY) )t”.

1—2
n>2

Since g > 1 holds, we have (na)* < ¢ (n = 1,2,...) for some ¢ > 0. We have the
following majorant relation:

A(l + Bc)n—lqn(n—l)/Q

(1 _ Z)lJr(nfl)a e

X(t,2) <>

n>1
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5. PROOF OF (2) OF THEOREM 2.3
We will consider the same equation

Clog,2)X + Y t7ebja(t,2)(0y) 02X = F(t, 2) (5.1)
(J,a)EA

as (4.4) under the same conditions as in Section 4. In addition, as is supposed in
Theorem 2.3, we assume here that 0 < mg < m, am,,0(0,0) # 0, by 0(0,0) # 0, and

bja(0,2) =0 for mp <j <mand |a| > 0. (5.2)

The last condition is equivalent to the condition that ord;(aja) > j—mo+2if o] > 0
and my < 7 < m. We set

bj,()(O,Z) . Qm, ’0(0,2)
P(r,z) = Z WTJ mo | qmo[()mw (5.3)

mo<j<m

which is a polynomial of degree m — mg with respect to 7. Since by, 0(0,0) # 0 and
(my,0(0,0) # 0 are supposed, the equation P(7,0) = 0 in 7 has m — mg non-zero
roots. We denote them by 71, ..., Tm—m,. We set

m—mgo

S = U {tT;;t > 0}.

i=1
For A € C\ {0} and 0 > 0, we write Sp(A\) = {£ € C\ {0}; |arg{ —arg \| < 0}.

Lemma 5.1. For any A € C\ ({0} US) we can findc>0,60>0,r>0and R >0
such that |P(&, z)| > c(|¢] + 1)™~ ™0 holds on (Sp(A) U D,) x Dp.

From now, we take any A € C\ ({0} US) and fix it. Take also ¢ > 0,60 >0, >0
and R > 0 so that Lemma 5.1 holds, and fix them. We may suppose that r and R
are sufficiently small. Set Q@ = (Sp(A) U D;.) x Dg. Under these settings, we take a
sufficiently large ;€ N* so that

_ lla;,0(0)[|
p= ; cqmo(mo—1)/2(gmo—i)u <l (5.4)
J<mo

This is possible, because (¢™°77)* — oo (as p — o0).

5.1. FORMAL ¢-BOREL TRANSFORMS

Let us recall the definition of formal g-Borel transforms introduced by Zhang [14]. For
a formal series

V(t,z) =Y Val2)t" € Orlft]],

n>0
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the formal g-Borel transform B, [V](€, 2) of V (¢, 2) is defined by

BalVl(e.2) = 3 —2l)_en ¢ Onflel

n>0 g
The following property is known (see Statement 1.3.3 in [14]).
Lemma 5.2. Let a(t,z) = > ;5 ap(2)t* € Og[[t]], and let V(t,z) € Og|[t]]. Set
v(€, z) = Bya[V](§, 2). Then, for any m € N we have

[;’(ﬁl [& X (Uq)mf/} (532) = k(k(lz/ggk ( me k§7z)

k>0 4
Corollary 5.3. For any m € Nf* and k € N*, we have
(1) Byt (og)V](£, 2) = PG v(§, 2),

fm—i—k

(2) Byt (o)™ V1€, 2) = m( -1)* (€, 2),
(3) Bualt™ (0" VN6 2) = by (03) (6 ).

5.2. EQUATION IN THE ¢-BOREL PLANE

Let
= Xa(2)t" € Og|[t]

n>0

be a formal solution of (5.1), and let & be as in (5.4). We set
=) Xu(2)t
np
Then, X*(t, z) is a formal solution of the equation
Clog,2) X" + Z tPieb; o (t, 2)(0,) 02 X* = F*(t,2) (5.5)
(7,)EA
for some holomorphic function F*(¢,z) on D, x Dg with ord:(F*) > p.
Lemma 5.4. By multiplying equation (5.5) by t™° we have the expression
D t™a;0(0,2) (0 X+ Y tb0(0,2)(0,) X*

j<mg mo<j<m

YA (£ 2) (0 XY T (8 2) (o) X
j<mo mo<j<m

+ Y T (1 2) (o) 00 X
j<mo,|a|>0

+ Y R (t2)(0g) 09X = tTOF (¢, 2)
mo<j<m,|a|>0

for some holomorphic functions b} ,(t,2) ((j,«) € A) on D, x Dg.
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Proof. By the definition of p; o, we have

Z tmoaj}o(o,z)(aq)jX* + Z tmo—i-lbj,o(t,z)(aq)jX*

j<mo j<mg

+ Z Ibjo(t, 2) (o) X*

mo<j<m

i Z tmax{1+mo7j+1}bj7a(t7z)(aq)jagX* = tmOF*(th)'
(J,a)€A,|a|>0

Therefore, by setting
b5 ot 2) = (bjo(t, 2) — bj0(0,2))/t, ifmg<j<m,
b o(t,2) = bjalt, 2)/t, if mg < j <m and |a| > 0,
b5 o (t,2) = bjalt, 2), in the other case
we obtain (5.6). In the case |a| > 0 and mg < j < m, we have used condition (5.2). O

Now, let us apply formal ¢-Borel transform to equation (5.6). Under the setting

u(€,2) = Bua[X7)(€,2), F'(t,2) = Fi(2)

n>pu

oty (5 2) = Y cor(2)tt (Jal =0and j < mp),
k>mo+1

tj“b;f,o(t,z) = Z ciok(2)th (la] =0 and mg < j < m),
k>j+1

P ()= S cpan(E (o] > 0 and § < mo)
k>mo+1

PR (1) = Y cran( (o] >0 and my < j < m)
k2>j+2
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we have the equation

aj,O(OaZ) m m 7 JO 0 Z
Z qmo(mo—l)/25 O(U B ut Z q](] 1)/2

j<mo mo<j<m
Cj Ok: Cj Ok — g
R BULA k i 9,0,k\ <) k—j
+ Z Z P72 1)/2 (o) Tu E: 2: (- 1/2 ¥ (04-1)"u
1<mo k>m0+1 mo<j<mk)>]+l

G Olk k—jqo
+ Z Z Z(k 1)/2 (crqa) To%u (5.7)

j<mo,|a|>0 k>m,o+1

C]ak k—j na
+ Z Z gFE=172 1)/2 € (og-1)* 702

mo<j<m,|a|>0 k>J+2

— ) £n+m0
n+m0)(n+m0 1)/2 :
1'7,>u,

Therefore, by canceling £™° from both sides of this equation, and then by using P (¢, z)
n (5.3) and the notations

0 ( ) — amo—i,o(oaz) (Z =1,.

mo—1 qmo(mo—l)/Q .. ,mo),

0 _ Gok+me(?) ,
Cj,O,k(Z) - qmo(mr)*l)/Oquok (.7 <mg and k > 1)7

_ Cok+i(2)

C?,o,k(z) = JU-Di2gk (mo <j<mandk>1),

Cj.onktmo (2) .
) an(z) = qmoﬂ(:%il”)%qmok (lal >0, 5 <mg and k > 1),
0 Cjaktj+1(2) ,
Ciak(2)= (la] >0, mg <j<mandk>1),

@D /2¢G+DE

Fr(2)
fn(Z) = qmo(mofl)/quon’ n =,
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we can reduce our equation (5.7) into the form
mo )
P& 2)u+ Z iy —i(2)(7q-1)"u

JOk k+(mo—j
+ Z Z P 1)/2 q”) (mo=d)y

j<mo k>1

]Ok k+(j—m k
+ Z Z qr(h— 1/25 v= O)(Uq—l)u

mo<j<m k>1

],ak k+(mo—3) Ao
+ Z Z P 1/2 *(og-1) TV O%u

0<j<mo,|a|>0 k>1

Jak‘ k+(j+1— k+1
LD DD B Sl st g, g
m0<]<m \a|>0 k>1

nn 1 /2
n>u

The meaning of this equation is as follows:
Lemma 5.5.

(1) By taking r > 0 and R > 0 sufficiently small, we may assume that u(§,z) =
B, [X*(€,2) is a holomorphic function on D, x Dg.

(2) Each sum in (5.8) is a holomorphic function on D, x Dg in the following sense:
if c(z) € Or (k > 1) satisfy the estimates |cx(2)] < Ch* on Dgr (k > 1) for
some C' > 0 and h > 0, the sum

ck(2) i e .
mfl“ (04-1)Teu (withi €N, e € N)

k>1

is a holomorphic function on D,» x Dg with v’ = rq'*

Proof. By Proposition 4.1, we have the estimates || X,|zg < AH"¢"(»~1/2 (n =
0,1,2,...) for some A > 0 and H > 0. By taking 0 < r < 1/H we have the result (1).
We note that

Crpl\Z2 .
g el < CUDW (D), = € D
E>1

where

C n
C(§)=Zﬁ§’““ and (¢ ZAH"( 1+e> .

k>1 q n>u

Since C(£) is an entire function in ¢ and W () is a holomorphic function on
{¢; €] < ¢**¢/H}, we have the result (2). O
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5.3. HOLOMORPHIC EXTENSION OF u(¢, 2)

As is seen above, the formal g-Borel transform u(¢, z) = By.1[X*](€, 2) is a holomor-
phic solution of (5.8) on D, x Dg. The following is the main result on equation (5.8).

Proposition 5.6. The local solution u(§, z) has a holomorphic extension u*(, z) to
a domain (Sg(\) U D,.,) X Dg for some r1 > 0 that satisfies the following properties:

(1) u*(&, 2) is also a solution of (5.8).
(2) For any 0 < Ry < R there are A >0 and H > 0 such that

lu(A\g™, 2)| < AH™q™ ™+ D/2 on Dp, for any m =0,1,2,. . ..

The proof of this result will be given in Section 6. We will admit this result for a
while.

5.4. ¢-ANALOGUE OF THE SUMMABILITY OF X(t, z)

Now, let us return to the situation in Theorem 2.3. Let u*(€, z) be the holomorphic
extension of u(¢, z) to the domain €y = (Sp(A) U D,,) x Dg. Let 94(x) be the Jacobi
theta function defined by

m

X
Uq(z) = Z m(m—1)/2

meZ q
which is a holomorphic function on C\ {0}. We set

* )\qﬂ
W (t,z)zﬁ Zﬁ O /D)

which is the ¢-Laplace transform of u*(§,z) in the direction A\ (introduced by
Ramis-Zhang [11]). Then, by combining the above Proposition 5.6 with Théoréme
1.3.2 in [15] (or Proposition 1 in [4]) we get the following theorem.

Theorem 5.7.

(1) W*(t, z) is a holomorphic solution of equation (5.5) on (D, \ ({0} U Z3)) x Dg,
for some r9 > 0.
(2) Moreover, there are My > 0 and Hy > 0 such that the following estimate holds

MyHN
W*(t, 2) E Xn( 171(]N(N_1)/2|t|N fort € Ue and z € Dp,
€
n=p

for any sufficiently small € > 0 and any N > p, where U, = D,, \ ({0} U 25 ).
By setting

ZX ()" + W (L, 2)

we have a true holomorphic solution of (2.1) which admits X (t,z) as a ¢-Gevrey
asymptotic expansion of order 1. This proves (2) of Theorem 2.3.
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6. PROOF OF PROPOSITION 5.6

Let A€ C\{0},0>0,7 >0, and R > 0, set Q = (D, USp()\)) x D C C¢ x CY, and
set N = m — my. In this section, as a model of (5.8) we will consider the equation

K
Ci,j,ok i €0 na
P& 2ut ) ai(2) (o4 “+Z > kj(k 1)/251~C+ (0g-1)" e 02u
i=1 i=0 (jyenr k=1 6.1)

— n
n n— 1 /2
n>u

on 2. We suppose that 0 < R < 1 and the following conditions (c¢;)—(cs) hold:

(c1) P(&,2) = N + e1(2)EN "1 + ... 4+ en(2) € Og[¢] for some N € N. Moreover,
|P(&,2)] > ¢(]€] + 1)V holds on € for some ¢ > 0.

(c2) K and p are positive integers, and A* is a finite subset of N x {a € N%; |a| < L}
(where L € N*¥).

(c3) eja ((4,) € A*) are integers satisfying

eja >0, if|a|=0,
eja>1, if |af > 0.

(ca) ai(z) € O (i =1,...,K) and satisfy

K
Z Ha’HR <1 (this corresponds to (5.4)).

(¢5) Cijan(z2) € Op (0<i <N, (j,a) € A" and k > 1) and f,(2)
Moreover, there are B > 0 and h > 0 such that ||¢; j.a.k||r < Bh*
(4, )EA* k> 1) and ||fnllr < BR™ (n > u) hold.

Then, we have the following result which yields Proposition 5.6.

S
=)
IA —~
IN IV
=

Proposition 6.1.

(1) Equation (6.1) has a unique formal solution of the form (€, z) € & x Ogl[[€]].
(2) Equation (6.1) has a unique holomorphic solution u(§, z) on Q. Moreover, for any
0 < Ry < R there are Ay > 0 and Hy > 0 such that

lu(Ag™, 2)| < AgHo™ g™ ™+ V/2  on Dg, for any m =0,1,2,. ... (6.2)

The part (1) is verified by a simple calculation and the following lemma:

Lemma 6.2. For any n > u and g,(z) € Og, the equation

P(0, z)w, + Z ai(z) ((1;7)1” = gn(2)

has a unique solution wy(z) € Og.
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Proof. Since |P(0,z)| > ¢ holds on Dpg, by the assumption (c4) we have

P(0, 2) +Z‘_|POZ|—Z”(Z7|)|R>C(1—5) 0,
=1

and so we have the result. O

The proof of the part (2) will be done in Subsections 6.1-6.3.

6.1. ON EQUATION Lw =g
We set
K
z) + Z ai(z)(o,-
i=1
and consider the equation
Lw=g(&z) onQ. (6.3)
We denote by O(2) the set of all holomorphic functions on €.
Lemma 6.3.
(1) Let g(&,2) € OQ). If |9(&,2)] < A|¢|° holds on Q0 for some A > 0 and b > p,
equation (6.3) has a unique holomorphic solution w(&, z) € O(Q) satisfying
Algl°

\w({,z)| S C(l _B)(lﬂ + 1)N

on . (6.4)

(2) Let g(&,2) € O(Q). If it satisfies

Algl®

g()lls < W

on D, U Sp(A) for any 0 < s <R

for some A > 0, a > 0 and b > pu, equation (6.3) has a unique holomorphic
solution w(€, z) € O(Q) satisfying

1 Algl®
c(1=p) (R—=s)*(|g + 1N
Proof. Let us show (1). We construct a solution in the form

=Y wal§,2), (6.5)

n>0

[w(©)lls <

on Dy U Sp(A) for any 0 < s < R.

where w,(§,2) (n=0,1,2,...) are solutions of the following recurrent formulas:

P(f, Z)wO = g(gv Z) (66)

and for n > 1

P 2)w, = — Z ai(2)(0g-1) " wn_1. (6.7)

1<i<K
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Since |P(&,2)| > ¢(|¢] + 1) on Q is supposed, by (6.6) and (6.7) we can uniquely
determine w, (&, z) € O(Q) (n=0,1,2,...) inductively on n.

By (6.6) and the assumption, we have
Algl®

ety

lwo (&, 2)| <

Then, we have

> ai2) (o) wo| < Y laillr % lwo(§/d", 2)]

1<i<K 1<i<K

Al¢/q' llaillr b b
< Z ||G/L||RXW§ Z c ><A|€| <5A|§|

1<i<K 1<i<K (')°

Therefore, by (6.7) with n = 1, we have the estimate

BAlE[
wy(&,2)| < ———= on )
By repeating the same argument we have the estimates
srAlgl
wp(&,2)| < ——>~ onf), n=0,12,.... 6.8
[wnl6 )] € oo (63)

Thus, we can see that the formal solution w(§, z) in (6.5) is convergent and it defines
a holomorphic solution of (6.3) on Q. The estimate (6.4) is clear from the estimates
(6.8).

As is seen in (1) of Proposition 6.1, it is clear that equation (6.3) has a unique
formal solution w(t,z) € &* x Ogl[[¢]]. This shows the uniqueness of the solution
in O(92).

Thus, part (1) is proved. The result (2) is a consequence of (1). O

6.2. ON EQUATION (6.1)
Next, let us solve equation (6.1), that is,

2urY. YW e gz = Y S o

i=0 (j,0)EA* k>1 n2p
on Q. To do so, we set the formal solution u(¢, z) in the form
n>p

and we solve the following recurrent formulas:

Zu = e ©9
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and forn > p+1

fn ci,j@,k(z) ki ktes.a qo
Luy = qn(n— 1)/25 Z Z Z W& (0g-1)"" 0% Up . (6.10)

=0 (j,a)eA* 1<k<n—pu

Lemma 6.4. We have a unique solution u,(§,z) € O(Q) (n > u) of the system (6.9)
and (6.10) that satisfies the following: there are A > 0 and H > 0 such that

nplal
l02un (s < Grrata—syen

" on D, USy(A
£| 0( ) (6.11)
for any 0 < s < R and any |a| <L
holds for any n > p.

Proof. Since ||f,||lr < Bh* is supposed, by applying (1) of Lemma 6.3 to equation
(6.9) we have a unique solution u, (&, z) € O(12) satisfying the estimate

1 " Bh*[E|# < 1 " BR*|E|*
c(1=B)(E]+ DN = gnu=D/2 = (1= p) = grn=1/2

By applying Lemma 2.5 to this estimate and by using the condition 0 < R < 1 we
have

lun(§,2)| < on €.

o 1 BRhHE™ |alel®]
020 < S5 X o T g
Lle* BhH[¢]*

c(1-0) x g(e=1/2(R — s)L on DU Ss(3)
for any 0 < s < R and |a| < L. Hence, if we take A > 0 and H > 0 so that
Llet
AH" > ———— x Bh¥, 6.12
(1) (642
by the condition & > 1 we have the estimate (6.11) for n = p. Let us show the general
case by induction on n.
Let n > p+ 1, and suppose that we already have u,(§,2) € O(Q) (u < p < n)
which satisfy estimate (6.11) with n replaced by p for all 4 < p < n. We set

. n Ci,jvayk(z) k+1 k+ej o o
g”(f’z) - n(n 1)/2§ Z Z Z Wﬁ (gqfl) ’ az Un—F-

=0 (j,a)eA* 1<k<n—p

Then our equation (6.10) is written as Lu, = g,(§, z). By assumption (¢5) and the

induction hypothesis, we can see that g, (£,2) € O(Q) is known and it satisfies the
estimate
n Bh* ki
llgn (&)l < prICs 1/2|§| +Z Z Z mm X
1=0 (j,a)eA* 1<k<n—pu (613)
AH™ *(n — k)l ( €] )"*’“
X g =R —F=D/2(R — ¢)L(n—k) \ gh+e;a



g-analogue of summability of formal solutions. . . 735

on D, USy()\) for any 0 < s < R. Since 0 < R < 1 is supposed and

nn—1) k(k—1) (nm—-k)n—-k-1)
5 = 5 + 2 + k(n—k)

holds, from (6.13) we have

AH"|E]" B h
lgn ()ls < 7z(n—1)/2(R|— s)Ln=1) [A(>

2SS BB e e

i= 0(] 0)eA* 1<k<n—pu

Y Y B e ]

1=0 (j,a)eA*,|a|>01<k<n—p

Since e; > 0, we have 1/¢%°("=%) < 1. Since m*/¢™ — 0 (as m — o0), we have
mb /g™ < ¢y for some ¢y (we may assume that co > 1 holds). Then for 0 < |a| < L,
we have e; , > 1 and so

(n—k)lel (n—k)L

< < ¢p.
P I )

Therefore, if we assume the conditions A > B and H > h, we have the estimate

Aann CBhH 7
< e () 3 3 SP g ]

1=0 (j,a)EA*

for any 0 < s < R. Thus, by applying Lemma 6.3 to equation -Lu,, = g, (§, z) and by
using the estimates |¢]?/(|¢| + 1) <1 (0 <4 < N) we have

1 AH" ¢ coB(h/H)
[un(O)ls < o(1 = B) g"(n=D/2(R — )L(n=1) [() + Z Z i— h/H }

i=0 (j,a)EA*

on D, U Sy()\) for any 0 < s < R.
Now, let us apply Lemma 2.5. We get

102 un ()]s
o1 MLm= +1).. . (Ln—1) + o) AH"E"
> C(l — B) n(n—l)/Q(R_ S)L(n 1)+
h coB(h/H
N

i=0 (j,a)EA*

1 elLinlelamniem coB(h/H)
o(1—B) " D[R — s)in K) +Z 2 1—h/H }

1=0 (j,a)EA*
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on D, USy()) for any 0 < s < R. If

(eL)t coB(h/H)
— < .
(1= 5) ( ) +Z 2. TonE | St (6.14)
1=0 (j,a)EA*
holds, we have the result (6.10).

Thus, by taking A and H so that A > B, H > h, (6.12) and (6.14) are satisfied
we have the result in Lemma 6.4. O

6.3. COMPLETION OF THE PROOF OF PART (2)

By Lemma 6.4, we can easily see that the formal solution

n>p

is convergent on ) and it defines a holomorphic solution of (6.1). Let us show the
estimate (6.2).
Take any 0 < R; < R. By Lemma 6.4, we have

AH"E”

lun (€, )] < " "—D/2(R — R;)Ln

on Oy = (D, USe()\)) x Dg, for any n > p. We set Hy = H|A|/(R — Ry)%: we obtain

AH"(|Alg™)"
U™ 2 S D (A" 2)| < Y e :
n>u n>u q ( 1)/2(R - Rl)L
(H[A|/(R — Ry)")" g™
=4 Z n(n 1)/2
n>pu
— AHqum(erl)/Q Z (H2)n7m

— —m—1)/2
L gir=minm)]

<y (Ha)AH," g™ m+D/2 ;= 0,1,2,....
where 4(x) is the Jacobi theta function. This proves (6.2).
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