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Abstract. Let q > 1. The paper considers a linear q-difference-differential equation: it
is a q-difference equation in the time variable t, and a partial differential equation in the
space variable z. Under suitable conditions and by using q-Borel and q-Laplace transforms
(introduced by J.-P. Ramis and C. Zhang), the authors show that if it has a formal power
series solution X̂(t, z) one can construct an actual holomorphic solution which admits X̂(t, z)
as a q-Gevrey asymptotic expansion of order 1.
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1. INTRODUCTION

Letm ≥ 1 be an integer, and let (t, z) = (t, z1, . . . , zd) ∈ Ct×Cdz be complex variables.
For r > 0 we write Dr = {t ∈ C ; |t| ≤ r} and D∗r = {t ∈ C ; 0 < |t| ≤ r}. For R > 0
we write DR = {z ∈ Cd ; |z| ≤ R} with |z| = max1≤i≤d |zi|. We denote by OR the set
of all holomorphic functions in a neighbourhood of DR, and by OR[[t]] the set of all
formal power series in t with coefficients in OR.

For a holomorphic function f(t, z) in a neighbourhood of (0, 0) ∈ Ct×Cdz , we define
the order of the zeros of the function f(t, z) at t = 0 ( we denote this by ordt(f)) by

ordt(f) = min{k ∈ N ; (∂kt f)(0, z) 6≡ 0 near z = 0},

where N = {0, 1, 2, . . .}.
Let us consider the linear partial differential equation

∑

j+|α|≤m
aj,α(t, z)(t∂t)

j∂αzX = F (t, z) (1.1)
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with the unknown function X = X(t, z), where aj,α(t, z) (j+ |α| ≤ m) and F (t, z) are
holomorphic functions in a neighbourhood of (0, 0) ∈ Ct × Cdz . The Newton polygon
N(1.1) of (1.1) is defined by

N(1.1) = the convex hull of
⋃

j+|α|≤m
C(j + |α|, ordt(aj,α))

in R2, where C(a, b) = {(x, y) ∈ R2 ; x ≤ a, y ≥ b}. See Miyake [8] and Ouchi [10]
(though Ouchi used the word “the characteristic polygon” instead of “the Newton
polygon”). Let us consider the following two cases:
Case 1. N(1.1) = {(x, y) ∈ R2 ; x ≤ m, y ≥ 0}.
Case 2. There is an integer 0 ≤ m0 < m such that

N(1.1) = {(x, y) ∈ R2 ; x ≤ m, y ≥ max{0, x−m0}}.

In Case 1, about the convergence of formal solutions of (1.1), by Baouendi-Goulaouic [1]
we have the following result.

Theorem 1.1. Suppose the condition in Case 1,

am,0(0, 0) 6= 0, and ordt(aj,α) ≥ 1 if |α| > 0.

Then, if (1.1) has a formal solution X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]], it is conver-

gent in a neighbourhood of the origin (0, 0) ∈ Ct × Cdz.

In Case 2, even if (1.1) has a formal solution, it is not convergent in general, but we
can give a meaning to this formal solution by using the notion of Borel summability.
By [10], we have the following theorem.

Theorem 1.2. Suppose the condition in Case 2,

am0,0(0, 0) 6= 0,
am,0(t, 0)

tm−m0

∣∣∣
t=0
6= 0,

and
ordt(aj,α) ≥ max{1, j + |α| −m0 + 1} if |α| > 0.

Then, if (1.1) has a formal solution X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]], it is Borel

summable in t (uniformly in z near z = 0) in a suitable direction.

Let q > 1. For a function f(t, z) we define the q-difference operator Dq by

(Dqf)(t, z) =
f(qt, z)− f(t, z)

qt− t .

In this paper, we will try to q-discretize equation (1.1) with respect to the time
variable t in the form

∑

j+|α|≤m
aj,α(t, z)(tDq)

j∂αzX = F (t, z), (1.2)

and we will consider the following problem.



q-analogue of summability of formal solutions. . . 715

Problem 1.3. Let X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]] be a formal solution of (1.2).

Then:

(1) (q-analogue of Theorem 1.1) Under what condition can we get the convergence of
the formal solution X̂(t, z)?

(2) (q-analogue of Theorem 1.2) Under what condition can we get a true solution
W (t, z) of (1.2) which admits X̂(t, z) as a q-Gevrey asymptotic expansion of
order 1 (in the sense of Definition 1.4 given below)?

For λ ∈ C \ {0} and ε > 0, we set

Zλ = {−λqm ∈ C ; m ∈ Z},
Zλ,ε =

⋃

m∈Z
{t ∈ C \ {0} ; |1 + λqm/t| ≤ ε}.

It is easy to see that if ε > 0 is sufficiently small the set Zλ,ε is a disjoint union of
closed disks. The following definition is due to Ramis-Zhang [11].

Definition 1.4. Let X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]] and let W (t, z) be a holo-

morphic function on (D∗r \ Zλ) × DR for some r > 0. We say that W (t, z) admits
X̂(t, z) as a q-Gevrey asymptotic expansion of order 1, if there are M > 0 and H > 0
such that ∣∣∣∣W (t, z)−

N−1∑

n=0

Xn(z)tn
∣∣∣∣ ≤

MHN

ε
qN(N−1)/2|t|N (1.3)

holds on (D∗r \Zλ,ε)×DR for any N = 0, 1, 2, . . . and any sufficiently small ε > 0.

To solve Problem 1.3 we will use the framework of q-Laplace and q-Borel
transforms via the Jacobi theta function, developed by Ramis-Zhang [11] and
Zhang [15]. In the case of q-difference equations (corresponding to ordinary differ-
ential equations), q-analogues of summability of formal solutions have been stud-
ied quite well by Zhang [14], Marotte-Zhang [7] and Ramis-Sauloy-Zhang [12]. In
the case of q-difference-differential equations, we have some references, Malek [5, 6],
Lastra-Malek [3] and Lastra-Malek-Sanz [4], but their equations are different from
ours.

2. MAIN RESULTS

Throughout this paper, we let q > 1 be a real number, m ≥ 1 be an integer, and σ > 0
be a real number. As a generalization of (1.2), we will treat the following equation

∑

j+σ|α|≤m
aj,α(t, z)(tDq)

j∂αzX = F (t, z) (2.1)

with the unknown function X = X(t, z), where aj,α(t, z) (j + σ|α| ≤ m) and F (t, z)
are holomorphic functions in a neighbourhood of (0, 0) ∈ Ct × Cdz .
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In this case, we will use the t-Newton polygon (see the paper by Tahara-Yamazawa
[13]): the t-Newton polygon Nt(2.1) of equation (2.1) is defined by

Nt(2.1) = the convex hull of
⋃

j+σ|α|≤m
C(j, ordt(aj,α)).

in R2. Let us consider the following two cases:
Case 1. Nt(2.1) = {(x, y) ∈ R2 ; x ≤ m, y ≥ 0}.
Case 2. There is an integer 0 ≤ m0 < m such that

Nt(2.1) = {(x, y) ∈ R2 ; x ≤ m, y ≥ max{0, x−m0}}.

In Case 1, we can give a q-analogue of Theorem 1.1 in the following form:

Theorem 2.1. Suppose the condition in Case 1,

am,0(0, 0) 6= 0, and ordt(aj,α) ≥ 1 if |α| > 0.

Then, if (2.1) has a formal solution X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]], it is conver-

gent in a neighbourhood of the origin (0, 0) ∈ Ct × Cdz.

Example 2.2. Let us consider

(tDq)
mX = A(z)t+B(z)tp(tDq)

j∂αzX,

where A(z) and B(z) are holomorphic functions in a neighbourhood of z = 0. In the
case when |α| = 0, if j ≤ m and p ≥ 1 we can apply Theorem 2.1 to this equation.
In the case when |α| > 0, if j ≤ m − 1 and p ≥ 1 we can apply Theorem 2.1 to this
equation. We note that for any |α| > 0 by setting σ = 1/|α| > 0 we have j+σ|α| ≤ m.

In Case 2, by assumption we have the expression

aj,0(t, z) = tj−m0bj,0(t, z) for m0 < j ≤ m

for some holomorphic functions bj,0(t, z) (m0 < j ≤ m) in a neighbourhood of (0, 0) ∈
Ct × Cdz . We set

P (ξ, z) =
∑

m0<j≤m

bj,0(0, z)

(q − 1)jqj(j−1)/2
ξj−m0 +

am0,0(0, z)

(q − 1)m0qm0(m0−1)/2
.

If the conditions am0,0(0, 0) 6= 0 and bm,0(0, 0) 6= 0 are satisfied, we see that P (ξ, 0)
is a polynomial of degree m −m0 and it has m −m0 non-zero roots τ1, . . . , τm−m0 .
Then, the set S of singular directions is defined by

S =

m−m0⋃

i=1

{tτi ; t > 0}.

As to a q-analogue of Theorem 1.2, we have the following result.
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Theorem 2.3.

(1) Suppose the condition in Case 2,

am0,0(0, 0) 6= 0, and ordt(aj,α) ≥ max{1, j −m0 + 1} if |α| > 0.

Then, if (2.1) has a formal solution X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]], we can

find A > 0, h > 0 and 0 < R1 < R such that |Xn(z)| ≤ Ahnqn(n−1)/2 on DR1
for

any n = 0, 1, 2, . . ..
(2) In addition, if the conditions

am,0(t, 0)

tm−m0

∣∣
t=0
6= 0 (this is equivalent to bm,0(0, 0) 6= 0),

ordt(aj,α) ≥ j −m0 + 2, if |α| > 0 and m0 ≤ j < m

are satisfied, for any λ ∈ C\ ({0}∪S) there are r > 0, R1 > 0 and a holomorphic
solution W (t, z) of (2.1) on (D∗r \Zλ)×DR1

such that W (t, z) admits X̂(t, z) as
a q-Gevrey asymptotic expansion of order 1.

Example 2.4. Let 0 ≤ m0 < m and let us consider

(tDq)
m0X = A(z)t+ tm−m0(tDq)

mX +B(z)tp(tDq)
j∂αzX,

where A(z) and B(z) are holomorphic functions in a neighbourhood of z = 0. In the
case |α| = 0, if j ≤ m and p ≥ max{1, j −m0 + 1} we can apply Theorem 2.3 to this
equation. In the case |α| > 0, if j ≤ m− 1 and p ≥ max{1, j −m0 + 2} we can apply
Theorem 2.3 to this equation. In both cases, S is given by

S = {z = te
√−1θ ∈ C ; t > 0, θ = 2πk/(m−m0), 0 ≤ k ≤ m−m0 − 1}.

The rest of this paper is organised as follows. In Section 3 we give a proof of
Theorem 2.1, in Section 4 we show part (1) of Theorem 2.3, and in Sections 5 and 6
we prove part (2) of Theorem 2.3.

By the definition of Dq, we have

(tDqf)(t, z) =
f(qt, z)− f(t, z)

q − 1
.

If we define the operator σq by σq(f)(t, z) = f(qt, z), we can rewrite equation (2.1)
to the following linear equation

∑

j+σ|α|≤m
aj,α(t, z)(q − 1)−j(σq − 1)j∂αzX = F (t, z)

which is written in the form
∑

j+σ|α|≤m
a∗j,α(t, z)(σq)

j∂αzX = F (t, z) (2.2)
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with

a∗j,α(t, z) =
∑

j≤k≤m−σ|α|
ak,α(t, z)(q − 1)−k

(
k

j

)
(−1)k−j , j + σ|α| ≤ m.

Therefore, in the proof of Theorems 2.1 and 2.3 in Sections 3–6 we will treat equation
(2.2) instead of the original equation (2.1). In the discussion, we will use the norm
‖ϕ‖s = max|z|≤s |ϕ(z)| and the following lemma.

Lemma 2.5. If a holomorphic function ϕ(z) on DR satisfies

‖ϕ‖s ≤
A

(R− s)a for any 0 < s < R,

for some A > 0 and a ≥ 0, we have the estimates

∥∥∂ziϕ
∥∥
s
≤ (a+ 1)eA

(R− s)a+1
for any 0 < s < R and i = 1, . . . , d.

For the proof, see [9] or Lemma 5.1.3 in [2].

3. PROOF OF THEOREM 2.1

Let us consider the equation
∑

j+σ|α|≤m
aj,α(t, z)(σq)

j∂αzX = F (t, z), (3.1)

where aj,α(t, z) (j+ σ|α| ≤ m) and F (t, z) are holomorphic functions in a neighbour-
hood of (0, 0) ∈ Ct × Cdz . To prove Theorem 2.1 it is enough to show the following
proposition.

Proposition 3.1. Suppose the conditions

am,0(0, 0) 6= 0, and ordt(aj,α) ≥ 1 if |α| > 0. (3.2)

Then, if (3.1) has a formal solution X̂(t, z) =
∑
n≥0Xn(z)tn ∈ OR[[t]], it is conver-

gent in a neighbourhood of the origin (0, 0) ∈ Ct × Cdz.

Proof. By the assumption, we can expand aj,α(t, z) (j + σ|α| ≤ m) and F (t, z) into
the forms:

aj,0(t, z) =
∑

k≥0

cj,0,k(z)tk (0 ≤ j ≤ m),

aj,α(t, z) =
∑

k≥1

cj,α,k(z)tk (|α| > 0),

F (t, z) =
∑

k≥0

Fk(z)tk.
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We may suppose that R > 0 is sufficiently small. Therefore, we may suppose
0 < R < 1, that cj,α,k(z) and Fk(z) are all holomorphic functions on DR, and that
there are B > 0 and h > 0 satisfying |cj,α,k(z)| ≤ Bhk (j + σ|α| ≤ m and k ≥ 1) and
|Fk(z)| ≤ Bhk (k ≥ 0) on DR. Since am,0(0, 0) 6= 0 is supposed, we may also assume
that am,0(0, z) 6= 0 on DR. We set

C(λ, z) =
∑

j≤m
aj,0(0, z)λj .

It is clear that there are constant c0 > 0 and a positive integer µ such that

|C(qn, z)| ≥ c0(qn)m on DR for any n ≥ µ. (3.3)

Since aj,0(0, z) = cj,0,0(z) (0 ≤ j ≤ m) holds, our equation (3.1) is written in the form

C(σq, z)X = F (t, z)−
∑

j+σ|α|≤m

∑

k≥1

cj,α,k(z)tk(σq)
j∂αzX. (3.4)

Let
X̂(t, z) =

∑

n≥0

Xn(z)tn ∈ OR[[t]]

be a formal solution of (3.1). By substituting this into (3.4) and by comparing the
coefficients of tn in both sides of the equation, we have the following recurrent formu-
las:

C(q0, z)X0 = F0(z)

and for n ≥ 1

C(qn, z)Xn = Fn(z)−
∑

j+σ|α|≤m

n∑

k=1

cj,α,k(z)(qj)n−k∂αzXn−k. (3.5)

We set L = m/σ; if j + σ|α| ≤ m we have |α| ≤ L. To prove Proposition 3.1 it is
enough to show the following lemma.

Lemma 3.2. There are A > 0 and H > 0 such that the estimate

‖∂αzXn‖s ≤
AHn

(R− s)Ln for any 0 < s < R and |α| ≤ L (3.6)

holds for any n = 0, 1, 2, . . ..

Proof of Lemma 3.2. Let µ be as in (3.3). Since ∂αzXn(z) (n = 0, 1, . . . , µ and |α| ≤ L)
are holomorphic functions on DR, by taking A > 0 and H > 0 sufficiently large we
have the condition (3.6) for n = 0, 1, . . . , µ.
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Let n > µ, and suppose that (3.6) with n replaced by p is already proved for all
p < n. Then, by (3.3), (3.5) and the induction hypothesis, we have

‖Xn‖s ≤
1

c0(qn)m

[
Bhn +

∑

j+σ|α|≤m

∑

1≤k≤n
Bhk(qj)n−k × AHn−k

(R− s)L(n−k)

]

≤ AHn

(R− s)L(n−1)c0(qn)m

[
B

A

( h
H

)n
+

∑

j+σ|α|≤m

∑

1≤k≤n
B
( h
H

)k
(qj)n−k

]
,

and so, by Lemma 2.5, we have

‖∂αzXn‖s ≤
AHne|α|(L(n− 1) + 1) . . . (L(n− 1) + |α|)

(R− s)L(n−1)+|α|c0(qn)m
×

×
[
B

A

( h
H

)n
+

∑

j+σ|α|≤m

∑

1≤k≤n
B
( h
H

)k
(qj)n−k

]
(3.7)

for any 0 < s < R. Here, we note that n/qσn → 0 (as n → ∞), and so n/qσn ≤ c1
(n = 1, 2, . . .) hold for some c1 > 1. Since

(L(n− 1) + 1) . . . (L(n− 1) + |α|) ≤ (Ln)|α| ≤ L|α|(c1qσn)|α|

holds, by applying this to (3.7) and by using (qn)j+σ|α| ≤ (qn)m we have

‖∂αzXn‖s ≤
AHn

(R− s)Ln ×
(eLc1)L

c0

[
B

A

( h
H

)n
+

∑

j+σ|α|≤m

∑

1≤k≤n
B
( h
H

)k]
.

Thus, if A ≥ B and H is sufficiently large with H > h, we have

(eLc1)L

c0

[
B

A

( h
H

)n
+

∑

j+σ|α|≤m

∑

1≤k≤n
B
( h
H

)k]

≤ (eLc1)L

c0

[( h
H

)n
+

∑

j+σ|α|≤m
B × h/H

(1− h/H)

]
≤ 1.

This proves that if we take A > 0 and H > 0 sufficiently large we have the estimate
(3.6). This proves Lemma 3.2.

Thus, we have proved Proposition 3.1.

Example 3.3. Let A > 0, B > 0, m ∈ N, j ∈ N, p ∈ N∗ (= {1, 2, . . .}), α ∈ N∗, and
let us consider

(σq)
mX =

A

1− z t+B tp(σq)
j∂αzX.

This equation has a unique formal power series solution and it is given by

X̂(t, z) =
∑

n≥0

ABn
qj(qp+1)j . . . (q(n−1)p+1)j

qm(qp+1)m . . . (qnp+1)m
(nα)!

(1− z)nα+1
tnp+1.

It is easy to see that X̂(t, z) is convergent if and only if j ≤ m− 1 holds: in this case,
by setting σ = 1/α we have j + σα ≤ m.
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4. PROOF OF (1) OF THEOREM 2.3

Let us consider the same equation (3.1) under the assumption that there is an integer
m0 with 0 ≤ m0 < m such that

{
ordt(aj,α) ≥ max{0, j −m0}, if |α| = 0,

ordt(aj,α) ≥ max{1, j −m0 + 1}, if |α| > 0
(4.1)

and that am0,0(0, z) 6= 0 on DR for some R > 0. We set

C(λ, z) =

m0∑

j=0

aj,0(0, z)λj

which is a polynomial of degree m0 in λ with holomorphic coefficients. Since the
condition am0,0(0, z) 6= 0 is assumed, we have a constant c0 > 0 and a positive integer
µ such that

|C(qn, z)| ≥ c0(qn)m0 on DR for any n ≥ µ. (4.2)

For simplicity, we set Λ = {(j, α) ∈ N×Nd ; j + σ|α| ≤ m} and set L = m/σ. We
have (j, 0) ∈ Λ for any j = 0, 1, . . . ,m, and if (j, α) ∈ Λ we have |α| ≤ L. By condition
(4.1), we see that:

if j ≤ m0 and |α| = 0, we have aj,0(t, z) = aj,0(0, z) + tbj,0(t, z),

if m0 < j ≤ m and |α| = 0, we have aj,0(t, z) = tj−m0bj,0(t, z),

if |α| > 0, we have aj,α(t, z) = tmax{1,j−m0+1}bj,α(t, z)

for some holomorphic functions bj,α(t, z) in a neighbourhood of (0, 0) ∈ C × Cd. By
setting 




pj,0 = 1, if j ≤ m0 and |α| = 0,

pj,0 = j −m0, if m0 < j ≤ m and |α| = 0,

pj,α = max{1, j −m0 + 1}, if |α| > 0

(4.3)

we see that our equation (3.1) is written in the form

C(σq, z)X +
∑

(j,α)∈Λ

tpj,αbj,α(t, z)(σq)
j∂αzX = F (t, z). (4.4)

Since |α|/L ≤ 1 holds for any (j, α) ∈ Λ, by the definition of pj,α ((j, α) ∈ Λ) we have

1 ≥ j + |α|/L−m0

pj,α
, (j, α) ∈ Λ. (4.5)

To prove (1) of Theorem 2.3 it is enough to show the following result.

Proposition 4.1. Suppose the conditions (4.2), (4.3) and (4.5) hold. Then, if

X̂(t, z) =
∑

n≥0

Xn(z)tn ∈ OR[[t]]



722 Hidetoshi Tahara and Hiroshi Yamazawa

is a formal solution of (4.4), there are A > 0, H > 0 and R1 > 0 such that

|Xn(z)| ≤ AHnqn(n−1)/2 on DR1 , n = 0, 1, 2, . . . . (4.6)

Proof. By assumption, we can expand bj,α(t, z) ((j, α) ∈ Λ) and F (t, z) into the forms:

bj,α(t, z) =
∑

k≥0

bj,α,k(z)tk ((j, α) ∈ Λ),

F (t, z) =
∑

k≥0

Fk(z)tk.

We may suppose that R > 0 is sufficiently small. Therefore, we may suppose
0 < R < 1, that bj,α,k(z) and Fk(z) are all holomorphic functions on DR, and that
there are B > 0 and h > 0 such that |bj,α,k(z)| ≤ Bhk ((j, α) ∈ Λ) and |Fk(z)| ≤ Bhk
(k ≥ 0) hold on DR.

Let

X̂(t, z) =
∞∑

n=0

Xn(z)tn ∈ OR[[t]]

be a formal solution of (4.4). By a calculation we have the following recurrent formulas:

C(q0, z)X0 = F0(z)

and for n ≥ 1

C(qn, z)Xn = Fn(z)−
∑

(j,α)∈Λ

∑

0≤k≤n−pj,α
bj,α,k(z)(qj)n−k−pj,α∂αzXn−k−pj,α . (4.7)

To prove Proposition 4.1 it is enough to show the following lemma.

Lemma 4.2. There are A > 0 and H > 0 such that the estimate

‖∂αzXn‖s ≤
AHnqn(n−1)/2

(R− s)Ln for any 0 < s < R and |α| ≤ L (4.8)

holds for any n = 0, 1, 2, . . ..

Proof of Lemma 4.2. Let µ be as in (4.2). Since ∂αzXn(z) (n = 0, 1, . . . , µ and |α| ≤ L)
are holomorphic functions on DR, by taking A > 0 and H > 0 sufficiently large we
have condition (4.8) for n = 0, 1, . . . , µ.

Let n > µ, and suppose that (4.8) with n replaced by p is already proved for all
p < n. Since (4.2) is known, Xn can be expressed in the form

Xn = Xn,F +
∑

(j,α)∈Λ

Xn,j,α

where Xn,F and Xn,j,α ((j, α) ∈ Λ) are defined by C(qn, z)Xn,F = Fn(z) and

C(qn, z)Xn,j,α = −
∑

0≤k≤n−pj,α
bj,α,k(z)(qj)n−k−pj,α∂αzXn−k−pj,α . (4.9)
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Then, if H ≥ h we have

‖Xn,F ‖s ≤
Bhn

c0(qn)m0
≤ AHn

c0
× B

A

( h
H

)µ
, (4.10)

and by (4.2), (4.9) and the induction hypothesis we have

‖Xn,j,α‖s ≤
1

c0(qn)m0

∑

0≤k≤n−pj,α
Bhkq(n−k−pj,α)j

× AHn−k−pj,αq(n−k−pj,α)(n−k−pj,α−1)/2

(R− s)L(n−k−pj,α)
.

(4.11)

We recall that by (4.5) we have pj,α − j +m0 ≥ |α|/L and so

−nm0 + (n− k − pj,α)j + (n− k − pj,α)(n− k − pj,α − 1)/2

= n(n− 1)/2− (k + pj,α − j +m0)(n− k − pj,α)

− (k + pj,α)(k + pj,α − 1)/2−m0(k + pj,α)

≤ n(n− 1)/2− (pj,α − j +m0)(n− k − pj,α)

≤ n(n− 1)/2− (|α|/L)(n− k − pj,α).

By applying this to (4.11), we have

‖Xn,j,α‖s ≤
AHnqn(n−1)/2

c0(R− s)L(n−k−pj,α)

1

q(|α|/L)(n−k−pj,α)

∑

0≤k≤n−pj,α
B
( h
H

)k 1

Hpj,α
,

and if H ≥ 2h holds, we have

‖Xn,j,α‖s ≤
AHnqn(n−1)/2

c0(R− s)L(n−k−pj,α)

1

q(|α|/L)(n−k−pj,α)

2B

Hpj,α
(4.12)

for any 0 < s < R.
Now, let us apply Lemma 2.5 to these estimates (4.10) and (4.12). Namely, for

any |α| ≤ L, we have

‖∂αzXn,F ‖s ≤
AHne|α||α|!
c0(R− s)|α| ×

B

A

( h
H

)µ
≤ AHnqn(n−1)/2

c0(R− s)Ln ×
eLL!B

A

( h
H

)µ
(4.13)

and

‖∂αzXn,j,α‖s ≤
AHnqn(n−1)/2

c0(R− s)L(n−k−pj,α)+|α| ×
2B

Hpj,α
×

× e|α|(L(n− k − pj,α) + 1) . . . (L(n− k − pj,α) + |α|)
q(|α|/L)(n−k−pj,α)

.
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Since (n+1)/(q1/L)n → 0 (as n→∞) holds, we have the estimate (n+1) ≤ c1(q1/L)n

(n = 0, 1, 2, . . .) for some c1 > 0. Then,

e|α|(L(n− k − pj,α) + 1) . . . (L(n− k − pj,α) + |α|)
q(|α|/L)(n−k−pj,α)

≤ e|α|(L(n− k − pj,α + 1))|α|

q(|α|/L)(n−k−pj,α)
≤ (eLc1)|α|,

and so we have

‖∂αzXn,j,α‖s ≤
AHnqn(n−1)/2

c0(R− s)L(n−k−pj,α)+|α| ×
2B

Hpj,α
(eLc1)|α| (4.14)

for any 0 < s < R.
By (4.13) and (4.14), we have

‖∂αzXn‖s ≤
AHnqn(n−1)/2

(R− s)Ln × C1 for any 0 < s < R

with

C1 =
eLL!B

c0A

( h
H

)µ
+

∑

(j,α)∈Λ

2B

c0Hpj,α
(eLc1)|α|.

Thus, if C1 ≤ 1 we can obtain the result (4.8). We note that if we take A > 0 and
H > 0 sufficiently large, we have the condition C1 ≤ 1. This completes the proof of
Lemma 4.2.

Thus, by (4.8) (n = 0, 1, 2, . . .), we have the condition (4.6). This proves Proposi-
tion 4.1.

Example 4.3. Let A > 0, B > 0, p ∈ N∗ and α > 0. The following equation is a
particular case of (4.4) with m0 = 0 and m = 1:

X =
A

1− z t+ tσqX +Btp∂αzX.

This equation has a unique formal power series solution and we can apply Proposi-
tion 4.1 to this case. In the case p = 1 the formal solution is given by

X̂(t, z) =
A

1− z t+
∑

n≥2

(
(q1 +B∂αz ) . . . (qn−1 +B∂αz )

A

1− z

)
tn.

Since q > 1 holds, we have (nα)α ≤ cqn (n = 1, 2, . . .) for some c > 0. We have the
following majorant relation:

X̂(t, z)�
∑

n≥1

A(1 +Bc)n−1qn(n−1)/2

(1− z)1+(n−1)α
tn.
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5. PROOF OF (2) OF THEOREM 2.3

We will consider the same equation

C(σq, z)X +
∑

(j,α)∈Λ

tpj,αbj,α(t, z)(σq)
j∂αzX = F (t, z) (5.1)

as (4.4) under the same conditions as in Section 4. In addition, as is supposed in
Theorem 2.3, we assume here that 0 ≤ m0 < m, am0,0(0, 0) 6= 0, bm,0(0, 0) 6= 0, and

bj,α(0, z) ≡ 0 for m0 ≤ j < m and |α| > 0. (5.2)

The last condition is equivalent to the condition that ordt(aj,α) ≥ j−m0 +2 if |α| > 0
and m0 ≤ j < m. We set

P (τ, z) =
∑

m0<j≤m

bj,0(0, z)

qj(j−1)/2
τ j−m0 +

am0,0(0, z)

qm0(m0−1)/2
(5.3)

which is a polynomial of degree m −m0 with respect to τ . Since bm,0(0, 0) 6= 0 and
am0,0(0, 0) 6= 0 are supposed, the equation P (τ, 0) = 0 in τ has m − m0 non-zero
roots. We denote them by τ1, . . . , τm−m0

. We set

S =

m−m0⋃

i=1

{tτi ; t > 0}.

For λ ∈ C \ {0} and θ > 0, we write Sθ(λ) = {ξ ∈ C \ {0} ; | arg ξ − arg λ| < θ}.
Lemma 5.1. For any λ ∈ C \ ({0} ∪ S) we can find c > 0, θ > 0, r > 0 and R > 0
such that |P (ξ, z)| ≥ c(|ξ|+ 1)m−m0 holds on (Sθ(λ) ∪Dr)×DR.

From now, we take any λ ∈ C \ ({0} ∪ S) and fix it. Take also c > 0, θ > 0, r > 0
and R > 0 so that Lemma 5.1 holds, and fix them. We may suppose that r and R
are sufficiently small. Set Ω = (Sθ(λ) ∪ Dr) × DR. Under these settings, we take a
sufficiently large µ ∈ N∗ so that

β =
∑

j<m0

‖aj,0(0)‖R
cqm0(m0−1)/2(qm0−j)µ

< 1. (5.4)

This is possible, because (qm0−j)µ →∞ (as µ→∞).

5.1. FORMAL q-BOREL TRANSFORMS

Let us recall the definition of formal q-Borel transforms introduced by Zhang [14]. For
a formal series

V̂ (t, z) =
∑

n≥0

Vn(z)tn ∈ OR[[t]],
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the formal q-Borel transform B̂q;1[V̂ ](ξ, z) of V̂ (t, z) is defined by

B̂q;1[V̂ ](ξ, z) =
∑

n≥0

Vn(z)

qn(n−1)/2
ξn ∈ OR[[ξ]].

The following property is known (see Statement 1.3.3 in [14]).

Lemma 5.2. Let â(t, z) =
∑
k≥0 ak(z)tk ∈ OR[[t]], and let V̂ (t, z) ∈ OR[[t]]. Set

v(ξ, z) = B̂q;1[V ](ξ, z). Then, for any m ∈ N we have

B̂q;1
[
â× (σq)

mV̂
]
(ξ, z) =

∑

k≥0

ak(z)

qk(k−1)/2
ξkv(qm−kξ, z).

Corollary 5.3. For any m ∈ N∗ and k ∈ N∗, we have

(1) B̂q;1[tm(σq)
mV̂ ](ξ, z) =

ξm

qm(m−1)/2
v(ξ, z),

(2) B̂q;1[tm+k(σq)
mV̂ ](ξ, z) =

ξm+k

q(m+k)(m+k−1)/2
(σq−1)kv(ξ, z),

(3) B̂q;1[tm(σq)
m+kV̂ ](ξ, z) =

ξm

qm(m−1)/2
(σq)

kv(ξ, z).

5.2. EQUATION IN THE q-BOREL PLANE

Let
X̂(t, z) =

∑

n≥0

Xn(z)tk ∈ OR[[t]]

be a formal solution of (5.1), and let µ be as in (5.4). We set

X∗(t, z) =
∑

n≥µ
Xn(z)tn.

Then, X∗(t, z) is a formal solution of the equation

C(σq, z)X
∗ +

∑

(j,α)∈Λ

tpj,αbj,α(t, z)(σq)
j∂αzX

∗ = F ∗(t, z) (5.5)

for some holomorphic function F ∗(t, z) on Dr ×DR with ordt(F
∗) ≥ µ.

Lemma 5.4. By multiplying equation (5.5) by tm0 we have the expression
∑

j≤m0

tm0aj,0(0, z)(σq)
jX∗ +

∑

m0<j≤m
tjbj,0(0, z)(σq)

jX∗

+
∑

j≤m0

tm0+1b∗j,0(t, z)(σq)
jX∗ +

∑

m0<j≤m
tj+1b∗j,0(t, z)(σq)

jX∗

+
∑

j<m0,|α|>0

tm0+1b∗j,α(t, z)(σq)
j∂αzX

∗

+
∑

m0≤j<m,|α|>0

tj+2b∗j,α(t, z)(σq)
j∂αzX

∗ = tm0F ∗(t, z)

(5.6)

for some holomorphic functions b∗j,α(t, z) ((j, α) ∈ Λ) on Dr ×DR.
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Proof. By the definition of pj,α, we have

∑

j≤m0

tm0aj,0(0, z)(σq)
jX∗ +

∑

j≤m0

tm0+1bj,0(t, z)(σq)
jX∗

+
∑

m0<j≤m
tjbj,0(t, z)(σq)

jX∗

+
∑

(j,α)∈Λ,|α|>0

tmax{1+m0,j+1}bj,α(t, z)(σq)
j∂αzX

∗ = tm0F ∗(t, z).

Therefore, by setting





b∗j,0(t, z) = (bj,0(t, z)− bj,0(0, z))/t, if m0 < j ≤ m,

b∗j,α(t, z) = bj,α(t, z)/t, if m0 ≤ j < m and |α| > 0,

b∗j,α(t, z) = bj,α(t, z), in the other case

we obtain (5.6). In the case |α| > 0 andm0 ≤ j < m, we have used condition (5.2).

Now, let us apply formal q-Borel transform to equation (5.6). Under the setting

u(ξ, z) = B̂q;1[X∗](ξ, z), F ∗(t, z) =
∑

n≥µ
F ∗n(z)tn,

tm0+1b∗j,0(t, z) =
∑

k≥m0+1

cj,0,k(z)tk (|α| = 0 and j ≤ m0),

tj+1b∗j,0(t, z) =
∑

k≥j+1

cj,0,k(z)tk (|α| = 0 and m0 ≤ j ≤ m),

tm0+1b∗j,α(t, z) =
∑

k≥m0+1

cj,α,k(z)tk (|α| > 0 and j < m0),

tj+2b∗j,α(t, z) =
∑

k≥j+2

cj,α,k(z)tk (|α| > 0 and m0 ≤ j < m)
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we have the equation

∑

j≤m0

aj,0(0, z)

qm0(m0−1)/2
ξm0(σq−1)m0−ju+

∑

m0<j≤m

bj,0(0, z)

qj(j−1)/2
ξju

+
∑

j≤m0

∑

k≥m0+1

cj,0,k(z)

qk(k−1)/2
ξk(σq−1)k−ju+

∑

m0<j≤m

∑

k≥j+1

cj,0,k(z)

qk(k−1)/2
ξk(σq−1)k−ju

+
∑

j<m0,|α|>0

∑

k≥m0+1

cj,α,k(z)

qk(k−1)/2
ξk(σq−1)k−j∂αz u

+
∑

m0≤j<m,|α|>0

∑

k≥j+2

cj,α,k(z)

qk(k−1)/2
ξk(σq−1)k−j∂αz u

=
∑

n≥µ

F ∗n(z)

q(n+m0)(n+m0−1)/2
ξn+m0 .

(5.7)

Therefore, by canceling ξm0 from both sides of this equation, and then by using P (ξ, z)
in (5.3) and the notations

a0
m0−i(z) =

am0−i,0(0, z)

qm0(m0−1)/2
(i = 1, . . . ,m0),

c0j,0,k(z) =
cj,0,k+m0

(z)

qm0(m0−1)/2qm0k
(j ≤ m0 and k ≥ 1),

c0j,0,k(z) =
cj,0,k+j(z)

qj(j−1)/2qjk
(m0 < j ≤ m and k ≥ 1),

c0j,α,k(z) =
cj,α,k+m0

(z)

qm0(m0−1)/2qm0k
(|α| > 0, j < m0 and k ≥ 1),

c0j,α,k(z) =
cj,α,k+j+1(z)

qj(j+1)/2q(j+1)k
(|α| > 0, m0 ≤ j < m and k ≥ 1),

fn(z) =
F ∗n(z)

qm0(m0−1)/2qm0n
, n ≥ µ,
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we can reduce our equation (5.7) into the form

P (ξ, z)u+

m0∑

i=1

a0
m0−i(z)(σq−1)iu

+
∑

j≤m0

∑

k≥1

c0j,0,k(z)

qk(k−1)/2
ξk(σq−1)k+(m0−j)u

+
∑

m0<j≤m

∑

k≥1

c0j,0,k(z)

qk(k−1)/2
ξk+(j−m0)(σq−1)ku

+
∑

0≤j<m0,|α|>0

∑

k≥1

c0j,α,k(z)

qk(k−1)/2
ξk(σq−1)k+(m0−j)∂αz u

+
∑

m0≤j<m,|α|>0

∑

k≥1

c0j,α,k(z)

qk(k−1)/2
ξk+(j+1−m0)(σq−1)k+1∂αz u

=
∑

n≥µ

fn(z)

qn(n−1)/2
ξn.

(5.8)

The meaning of this equation is as follows:

Lemma 5.5.

(1) By taking r > 0 and R > 0 sufficiently small, we may assume that u(ξ, z) =
B̂q;1[X∗](ξ, z) is a holomorphic function on Dr ×DR.

(2) Each sum in (5.8) is a holomorphic function on Dr ×DR in the following sense:
if ck(z) ∈ OR (k ≥ 1) satisfy the estimates |ck(z)| ≤ Chk on DR (k ≥ 1) for
some C > 0 and h > 0, the sum

∑

k≥1

ck(z)

qk(k−1)/2
ξk+i(σq−1)k+eu (with i ∈ N, e ∈ N)

is a holomorphic function on Dr′ ×DR with r′ = rq1+e.

Proof. By Proposition 4.1, we have the estimates ‖Xn‖R ≤ AHnqn(n−1)/2 (n =
0, 1, 2, . . .) for some A > 0 and H > 0. By taking 0 < r < 1/H we have the result (1).
We note that

∑

k≥1

|ck(z)|
qk(k−1)/2

|ξ|k+i|(σq−1)k+eu| ≤ C(|ξ|)W (|ξ|), z ∈ DR,

where

C(ξ) =
∑

k≥1

Chk

qk(k−1)/2
ξk+i and W (ξ) =

∑

n≥µ
AHn

( ξ

q1+e

)n
.

Since C(ξ) is an entire function in ξ and W (ξ) is a holomorphic function on
{ξ ; |ξ| < q1+e/H}, we have the result (2).
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5.3. HOLOMORPHIC EXTENSION OF u(ξ, z)

As is seen above, the formal q-Borel transform u(ξ, z) = B̂q;1[X∗](ξ, z) is a holomor-
phic solution of (5.8) on Dr×DR. The following is the main result on equation (5.8).

Proposition 5.6. The local solution u(ξ, z) has a holomorphic extension u∗(ξ, z) to
a domain (Sθ(λ) ∪Dr1)×DR for some r1 > 0 that satisfies the following properties:

(1) u∗(ξ, z) is also a solution of (5.8).
(2) For any 0 < R1 < R there are A > 0 and H > 0 such that

|u(λqm, z)| ≤ AHmqm(m+1)/2 on DR1
for any m = 0, 1, 2, . . ..

The proof of this result will be given in Section 6. We will admit this result for a
while.

5.4. q-ANALOGUE OF THE SUMMABILITY OF X̂(t, z)

Now, let us return to the situation in Theorem 2.3. Let u∗(ξ, z) be the holomorphic
extension of u(ξ, z) to the domain Ω1 = (Sθ(λ)∪Dr1)×DR. Let ϑq(x) be the Jacobi
theta function defined by

ϑq(x) =
∑

m∈Z

xm

qm(m−1)/2

which is a holomorphic function on C \ {0}. We set

W ∗(t, z) = Lλq;1[u∗](t, z) =
∑

n∈Z

u∗(λqn, z)
ϑq(λqn/t)

which is the q-Laplace transform of u∗(ξ, z) in the direction λ (introduced by
Ramis-Zhang [11]). Then, by combining the above Proposition 5.6 with Théorème
1.3.2 in [15] (or Proposition 1 in [4]) we get the following theorem.

Theorem 5.7.

(1) W ∗(t, z) is a holomorphic solution of equation (5.5) on (Dr2 \ ({0} ∪Zλ))×DR1

for some r2 > 0.
(2) Moreover, there are M1 > 0 and H1 > 0 such that the following estimate holds

∣∣∣∣W ∗(t, z)−
N−1∑

n=µ

Xn(z)tn
∣∣∣∣ ≤

M1H1
N

ε
qN(N−1)/2|t|N for t ∈ Uε and z ∈ DR1

for any sufficiently small ε > 0 and any N ≥ µ, where Uε = Dr2 \ ({0} ∪Zλ,ε).

By setting

W (t, z) =

µ−1∑

n=0

Xn(z)tn +W ∗(t, z)

we have a true holomorphic solution of (2.1) which admits X̂(t, z) as a q-Gevrey
asymptotic expansion of order 1. This proves (2) of Theorem 2.3.
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6. PROOF OF PROPOSITION 5.6

Let λ ∈ C \ {0}, θ > 0, r > 0, and R > 0, set Ω = (Dr ∪ Sθ(λ))×DR ⊂ Cξ ×Cdz , and
set N = m−m0. In this section, as a model of (5.8) we will consider the equation

P (ξ, z)u+
K∑

i=1

ai(z)(σq−1)iu+
N∑

i=0

∑

(j,α)∈Λ∗

∑

k≥1

ci,j,α,k(z)

qk(k−1)/2
ξk+i(σq−1)k+ej,α∂αz u

=
∑

n≥µ

fn(z)

qn(n−1)/2
ξn

(6.1)

on Ω. We suppose that 0 < R < 1 and the following conditions (c1)–(c5) hold:

(c1) P (ξ, z) = ξN + c1(z)ξN−1 + . . . + cN (z) ∈ OR[ξ] for some N ∈ N. Moreover,
|P (ξ, z)| ≥ c(|ξ|+ 1)N holds on Ω for some c > 0.

(c2) K and µ are positive integers, and Λ∗ is a finite subset of N×{α ∈ Nd ; |α| ≤ L}
(where L ∈ N∗).

(c3) ej,α ((j, α) ∈ Λ∗) are integers satisfying
{
ej,α ≥ 0, if |α| = 0,

ej,α ≥ 1, if |α| > 0.

(c4) ai(z) ∈ OR (i = 1, . . . ,K) and satisfy

β =

K∑

i=1

‖ai‖R
c(qi)µ

< 1 (this corresponds to (5.4)).

(c5) ci,j,α,k(z) ∈ OR (0 ≤ i ≤ N , (j, α) ∈ Λ∗ and k ≥ 1) and fn(z) ∈ OR (n ≥ µ).
Moreover, there are B > 0 and h > 0 such that ‖ci,j,α,k‖R ≤ Bhk (0 ≤ i ≤ N ,
(j, α) ∈ Λ∗, k ≥ 1) and ‖fn‖R ≤ Bhn (n ≥ µ) hold.

Then, we have the following result which yields Proposition 5.6.

Proposition 6.1.

(1) Equation (6.1) has a unique formal solution of the form û(ξ, z) ∈ ξµ ×OR[[ξ]].
(2) Equation (6.1) has a unique holomorphic solution u(ξ, z) on Ω. Moreover, for any

0 < R1 < R there are A0 > 0 and H0 > 0 such that

|u(λqm, z)| ≤ A0H0
mqm(m+1)/2 on DR1 for any m = 0, 1, 2, . . .. (6.2)

The part (1) is verified by a simple calculation and the following lemma:

Lemma 6.2. For any n ≥ µ and gn(z) ∈ OR, the equation

P (0, z)wn +
K∑

i=1

ai(z)
wn

(qi)n
= gn(z)

has a unique solution wn(z) ∈ OR.
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Proof. Since |P (0, z)| ≥ c holds on DR, by the assumption (c4) we have
∣∣∣∣∣P (0, z) +

K∑

i=1

ai(z)

(qi)n

∣∣∣∣∣ ≥ |P (0, z)| −
K∑

i=1

‖ai‖R
(qi)n

≥ c(1− β) > 0,

and so we have the result.

The proof of the part (2) will be done in Subsections 6.1–6.3.

6.1. ON EQUATION Lw = g

We set

L = P (ξ, z) +
K∑

i=1

ai(z)(σq−1)i

and consider the equation
Lw = g(ξ, z) on Ω. (6.3)

We denote by O(Ω) the set of all holomorphic functions on Ω.

Lemma 6.3.

(1) Let g(ξ, z) ∈ O(Ω). If |g(ξ, z)| ≤ A|ξ|b holds on Ω for some A > 0 and b ≥ µ,
equation (6.3) has a unique holomorphic solution w(ξ, z) ∈ O(Ω) satisfying

|w(ξ, z)| ≤ A|ξ|b
c(1− β)(|ξ|+ 1)N

on Ω. (6.4)

(2) Let g(ξ, z) ∈ O(Ω). If it satisfies

‖g(ξ)‖s ≤
A|ξ|b

(R− s)a on Dr ∪ Sθ(λ) for any 0 < s < R

for some A > 0, a ≥ 0 and b ≥ µ, equation (6.3) has a unique holomorphic
solution w(ξ, z) ∈ O(Ω) satisfying

‖w(ξ)‖s ≤
1

c(1− β)

A|ξ|b
(R− s)a(|ξ|+ 1)N

on Dr ∪ Sθ(λ) for any 0 < s < R.

Proof. Let us show (1). We construct a solution in the form

w(ξ, z) =
∑

n≥0

wn(ξ, z), (6.5)

where wn(ξ, z) (n = 0, 1, 2, . . .) are solutions of the following recurrent formulas:

P (ξ, z)w0 = g(ξ, z) (6.6)

and for n ≥ 1
P (ξ, z)wn = −

∑

1≤i≤K
ai(z)(σq−1)iwn−1. (6.7)
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Since |P (ξ, z)| ≥ c(|ξ| + 1)N on Ω is supposed, by (6.6) and (6.7) we can uniquely
determine wn(ξ, z) ∈ O(Ω) (n = 0, 1, 2, . . .) inductively on n.

By (6.6) and the assumption, we have

|w0(ξ, z)| ≤ A|ξ|b
c(|ξ|+ 1)N

on Ω.

Then, we have
∣∣∣∣
∑

1≤i≤K
ai(z)(σq−1)iw0

∣∣∣∣ ≤
∑

1≤i≤K
‖ai‖R × |w0(ξ/qi, z)|

≤
∑

1≤i≤K
‖ai‖R ×

A|ξ/qi|b
c(|ξ/qi|+ 1)N

≤
∑

1≤i≤K

‖ai‖R
c(qi)b

×A|ξ|b ≤ βA|ξ|b.

Therefore, by (6.7) with n = 1, we have the estimate

|w1(ξ, z)| ≤ βA|ξ|b
c(|ξ|+ 1)N

on Ω.

By repeating the same argument we have the estimates

|wn(ξ, z)| ≤ βnA|ξ|b
c(|ξ|+ 1)N

on Ω, n = 0, 1, 2, . . . . (6.8)

Thus, we can see that the formal solution w(ξ, z) in (6.5) is convergent and it defines
a holomorphic solution of (6.3) on Ω. The estimate (6.4) is clear from the estimates
(6.8).

As is seen in (1) of Proposition 6.1, it is clear that equation (6.3) has a unique
formal solution ŵ(t, z) ∈ ξµ × OR[[ξ]]. This shows the uniqueness of the solution
in O(Ω).

Thus, part (1) is proved. The result (2) is a consequence of (1).

6.2. ON EQUATION (6.1)

Next, let us solve equation (6.1), that is,

L u+
N∑

i=0

∑

(j,α)∈Λ∗

∑

k≥1

ci,j,α,k(z)

qk(k−1)/2
ξk+i(σq−1)k+ej,α∂αz u =

∑

n≥µ

fn(z)

qn(n−1)/2
ξn

on Ω. To do so, we set the formal solution u(ξ, z) in the form

u(ξ, z) =
∑

n≥µ
un(ξ, z)

and we solve the following recurrent formulas:

L uµ =
fµ(z)

qµ(µ−1)/2
ξµ (6.9)
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and for n ≥ µ+ 1

L un =
fn(z)

qn(n−1)/2
ξn−

N∑

i=0

∑

(j,α)∈Λ∗

∑

1≤k≤n−µ

ci,j,α,k(z)

qk(k−1)/2
ξk+i(σq−1)k+ej,α∂αz un−k. (6.10)

Lemma 6.4. We have a unique solution un(ξ, z) ∈ O(Ω) (n ≥ µ) of the system (6.9)
and (6.10) that satisfies the following: there are A > 0 and H > 0 such that

‖∂αz un(ξ)‖s ≤ AHnn|α|

qn(n−1)/2(R−s)Ln |ξ|n on Dr ∪ Sθ(λ)

for any 0 < s < R and any |α| ≤ L
(6.11)

holds for any n ≥ µ.
Proof. Since ‖fµ‖R ≤ Bhµ is supposed, by applying (1) of Lemma 6.3 to equation
(6.9) we have a unique solution uµ(ξ, z) ∈ O(Ω) satisfying the estimate

|uµ(ξ, z)| ≤ 1

c(1− β)(|ξ|+ 1)N
× Bhµ|ξ|µ
qµ(µ−1)/2

≤ 1

c(1− β)
× Bhµ|ξ|µ
qµ(µ−1)/2

on Ω.

By applying Lemma 2.5 to this estimate and by using the condition 0 < R < 1 we
have

‖∂αz uµ(ξ)‖s ≤
1

c(1− β)
× Bhµ|ξ|µ
qµ(µ−1)/2

|α|!e|α|
(R− s)|α|

≤ L!eL

c(1− β)
× Bhµ|ξ|µ
qµ(µ−1)/2(R− s)L on Dr ∪ Sθ(λ)

for any 0 < s < R and |α| ≤ L. Hence, if we take A > 0 and H > 0 so that

AHµ ≥ L!eL

c(1− β)
×Bhµ, (6.12)

by the condition µ ≥ 1 we have the estimate (6.11) for n = µ. Let us show the general
case by induction on n.

Let n ≥ µ + 1, and suppose that we already have up(ξ, z) ∈ O(Ω) (µ ≤ p < n)
which satisfy estimate (6.11) with n replaced by p for all µ ≤ p < n. We set

gn(ξ, z) =
fn(z)

qn(n−1)/2
ξn −

N∑

i=0

∑

(j,α)∈Λ∗

∑

1≤k≤n−µ

ci,j,α,k(z)

qk(k−1)/2
ξk+i(σq−1)k+ej,α∂αz un−k.

Then our equation (6.10) is written as L un = gn(ξ, z). By assumption (c5) and the
induction hypothesis, we can see that gn(ξ, z) ∈ O(Ω) is known and it satisfies the
estimate

‖gn(ξ)‖s ≤
Bhn

qn(n−1)/2
|ξ|n +

N∑

i=0

∑

(j,α)∈Λ∗

∑

1≤k≤n−µ

Bhk

qk(k−1)/2
|ξ|k+i×

× AHn−k(n− k)|α|

q(n−k)(n−k−1)/2(R− s)L(n−k)

( |ξ|
qk+ej,α

)n−k
(6.13)
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on Dr ∪ Sθ(λ) for any 0 < s < R. Since 0 < R < 1 is supposed and

n(n− 1)

2
=
k(k − 1)

2
+

(n− k)(n− k − 1)

2
+ k(n− k)

holds, from (6.13) we have

‖gn(ξ)‖s ≤
AHn|ξ|n

qn(n−1)/2(R− s)L(n−1)

[
B

A

( h
H

)n

+

N∑

i=0

∑

(j,0)∈Λ∗

∑

1≤k≤n−µ
B
( h
H

)k 1

qej,0(n−k)
× |ξ|i

+
N∑

i=0

∑

(j,α)∈Λ∗,|α|>0

∑

1≤k≤n−µ
B
( h
H

)k (n− k)|α|

qej,α(n−k)
× |ξ|i

]
.

Since ej,0 ≥ 0, we have 1/qej,0(n−k) ≤ 1. Since mL/qm → 0 (as m → ∞), we have
mL/qm ≤ c0 for some c0 (we may assume that c0 > 1 holds). Then for 0 < |α| ≤ L,
we have ej,α ≥ 1 and so

(n− k)|α|

qej,α(n−k)
≤ (n− k)L

q(n−k)
≤ c0.

Therefore, if we assume the conditions A > B and H > h, we have the estimate

‖gn(ξ)‖s ≤
AHn|ξ|n

qn(n−1)/2(R− s)L(n−1)

[( h
H

)n
+

N∑

i=0

∑

(j,α)∈Λ∗

c0B(h/H)

1− h/H × |ξ|i
]

for any 0 < s < R. Thus, by applying Lemma 6.3 to equation L un = gn(ξ, z) and by
using the estimates |ξ|i/(|ξ|+ 1)N ≤ 1 (0 ≤ i ≤ N) we have

‖un(ξ)‖s ≤
1

c(1− β)

AHn|ξ|n
qn(n−1)/2(R− s)L(n−1)

[( h
H

)n
+

N∑

i=0

∑

(j,α)∈Λ∗

c0B(h/H)

1− h/H

]

on Dr ∪ Sθ(λ) for any 0 < s < R.
Now, let us apply Lemma 2.5. We get

‖∂αz un(ξ)‖s

≤ 1

c(1− β)

e|α|(L(n− 1) + 1) . . . (L(n− 1) + |α|)AHn|ξ|n
qn(n−1)/2(R− s)L(n−1)+|α| ×

×
[( h
H

)n
+

N∑

i=0

∑

(j,α)∈Λ∗

c0B(h/H)

1− h/H

]

≤ 1

c(1− β)

eLLLn|α|AHn|ξ|n
qn(n−1)/2(R− s)Ln ×

[( h
H

)µ
+

N∑

i=0

∑

(j,α)∈Λ∗

c0B(h/H)

1− h/H

]
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on Dr ∪ Sθ(λ) for any 0 < s < R. If

(eL)L

c(1− β)

[( h
H

)µ
+

N∑

i=0

∑

(j,α)∈Λ∗

c0B(h/H)

1− h/H

]
≤ 1 (6.14)

holds, we have the result (6.10).
Thus, by taking A and H so that A > B, H > h, (6.12) and (6.14) are satisfied

we have the result in Lemma 6.4.

6.3. COMPLETION OF THE PROOF OF PART (2)

By Lemma 6.4, we can easily see that the formal solution

u(ξ, z) =
∑

n≥µ
un(ξ, z)

is convergent on Ω and it defines a holomorphic solution of (6.1). Let us show the
estimate (6.2).

Take any 0 < R1 < R. By Lemma 6.4, we have

|un(ξ, z)| ≤ AHn|ξ|n
qn(n−1)/2(R−R1)Ln

on Ω1 = (Dr ∪ Sθ(λ))×DR1
for any n ≥ µ. We set H2 = H|λ|/(R−R1)L: we obtain

|u(λqm, z)| ≤
∑

n≥µ
|un(λqm, z)| ≤

∑

n≥µ

AHn(|λ|qm)n

qn(n−1)/2(R−R1)Ln

≤ A
∑

n≥µ

(H|λ|/(R−R1)L)nqmn

qn(n−1)/2

= AH2
mqm(m+1)/2

∑

n≥µ

(H2)n−m

q(n−m)(n−m−1)/2

≤ ϑq(H2)AH2
mqm(m+1)/2, m = 0, 1, 2, . . .

where ϑq(x) is the Jacobi theta function. This proves (6.2).
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