PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ składu mieszanki i wyjściowego zawilgocenia kruszywa lekkiego na sorpcyjność kapilarną betonu keramzytowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Influence of mix composition and initial moistness of lightweight aggregate on capillary sorption of expanded clay aggregate concrete
Języki publikacji
PL
Abstrakty
PL
W artykule opisano badania kapilarności przeprowadzone na grupie sześciu betonów keramzytowych, wykonanych na bazie tych samych składników. W każdym przypadku użyto tego samego cementu portlandzkiego 42,5 R, wody wodociągowej pitnej oraz kruszywa keramzytowego frakcji 4 – 8 mm oraz piasku kwarcowego frakcji 0 – 2 mm. Poszczególne receptury różniły się po pierwsze stanem wilgotnościowym kruszywa grubego, które wprowadzane było do mieszanki jako kruszywo suche (S), powietrzno-suche (P) oraz w pełni nasycone wodą (N). Po drugie mieszanki różniły się objętościowym udziałem kruszywa lekkiego i zaprawy cementowej. Przyjęto proporcje zaprawa cementowa : kruszywo keramzytowe na poziomie 1:1 oraz 3:2. W rezultacie badaniom poddano 6 mieszanek umownie oznaczonych jako S 1:1, P 1:1, N 1:1 oraz S 3:2, P 3:2, N 3:2. Wykazano, że betony te charakteryzują się wyraźnie różnym tempem podciągania kapilarnego, a tym samym różnymi wartościami współczynników sorpcji kapilarnej A. Najlepszymi parametrami odznaczały się betony wykonane na kruszywie suchym o stosunku zaprawa:kruszywo 1:1. Wykazały one najniższą wartość współczynnika sorpcji wynoszącą A = 0,9 kg/(m2h). Ten rodzaj betonu będzie najefektywniej blokował wnikanie wody w beton i w konsekwencji będzie odznaczał się najwyższą odpornością na działanie substancji korozyjnych wprowadzanych z wodą oraz najwyższą mrozoodpornością. Najgorszymi parametrami charakteryzowały się keramzytobetony o większym udziale objętościowym zaprawy cementowej, tj. o proporcjach zaprawa:kruszywo keramzytowe 3:2. Przy czym w przypadku kruszywa nasyconego wodą (N) i ziarnach wysuszonych na powierzchni (P) uzyskano współczynniki A wyższe odpowiednio 2,52,8 razy w stosunku do receptury S 1:1.
EN
This paper presents the results of capillary porosity tests carried out using six expanded clay aggregate concretes, made from the same ingredients. Each aggregate was manufactured with the same type of Portland cement 42.5 R, potable mains water, expanded clay aggregate (4–8mm), and quartz sand (0–2mm). The effect of coarse aggregate humidity on the mixture was examined using dry (S), air-dry (P) and fully saturated (N) aggregates. Additionally, the mixtures had different volume ratios of lightweight aggregate and cement mortar. Ratios of 1:1 and 3:2 of cement mortar and expanded clay aggregate were used. Consequently, tests were carried out using 6 mixture types labelled S 1:1, P 1:1, N 1:1 and S 3:2, P 3:2, N 3:2. The results confirmed that these concretes had significantly different rates of capillarity and water absorption coefficients due to capillarity. The best results were obtained from concretes made using the dry aggregate with a 1:1 ratio of mortar and aggregate. This concrete had the lowest coefficient of A = 0.882 kg/(m2h). This type of concrete should most efficiently prevent water absorption and, as a consequence, ensure the highest resistance to corrosive substances carried by water, as well as the highest freeze-thaw resistance. The least favourable were expanded clay aggregate concretes with a large volume of mortar, namely a 3:2 ratio of cement mortar and expanded clay aggregate. For aggregates saturated with water (N) and aggregate particles dried on the surface (P), the A coefficient was 2.5 and 2.8 times higher with respect to the S 3:2 mixture.
Twórcy
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Budownictwa i Architektury, Al. Piastów 50, 70-311 Szczecin, tel. 91 449 48 29
  • absolwentka Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie, al. Piastów 50, 70-311 Szczecin, 91-449-48-29
Bibliografia
  • [1] Alsabry A.: Transport wilgoci w przegrodach budowlanych z materiałów kapilarnoporowatych, Uniwersytet Zielonogórski, Zielona Góra 2011.
  • [2] Domagała L.: Konstrukcyjne lekkie betony kruszywowe, Politechnika Krakowska, Kraków 2014.
  • [3] Ganter E., Chojczak W.: Materiały budowlane. Spoiwa, kruszywa, zaprawy, betony. Ćwiczenia laboratoryjne, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2013.
  • [4] Garbalińska H.: Izotermiczne współczynniki transportu wilgoci porowatego materiału budowlanego, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin 2002.
  • [5] Klemm P. i in.: Budownictwo ogólne. Tom 2. Fizyka budowli, Arkady, Warszawa 2005.
  • [6] Narodowska K.: Badania i analiza wybranych właściwości betonów lekkich wykonanych na kruszywie keramzytowym. Praca dyplomowa inżynierska realizowana pod kierunkiem H. Garbalińskiej, Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, czerwiec 2015.
  • [7] PN-EN ISO 9346 (2009): Cieplno-wilgotnościowe właściwości użytkowe budynków i materiałów budowlanych. Wielkości fizyczne dotyczące przenoszenia masy. Słownik.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bbc1d39-5b5e-45f1-ba04-326ea8499c4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.