PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact and Importance of Fabric Image Preprocessing for the New Method of Individual Inter-Thread Pores Detection

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper describes the impact and importance of preprocessing methods of fabric image for detection of inter-thread pores (ITP), which is a new method of individual ITP identification. The aim of this experiment is to identify precisely every individual ITP of fabric structure by using optimal preprocessing algorithm for further quantitative, morphometric structural analysis of specialized fabrics (barriers, industrial filters, composites, others) in context of air permeability, flow resistance, UV radiation, viruses penetration, thermal comfort by estimation fabric porosity, especially macroporosity parameters and cover factor. The correct identification of individual ITP depends on the acquisition method and the preprocessing algorithm. It was conducted by analyzing the adaptation of digital image preprocessing methods for two structures of plain weave fabric in two magnification zooms, 1.25 and 0.8. Preprocessing operations were performed in the area of spatial operations of the image. The optimal preprocessing algorithm includes low-pass filtering, histogram equalization, nonlinear filtering, thresholding, and morphological operation. This algorithm was selected based on the factors developed by the author (ITP detection, RID factor—a difference between the real and model ITP areas) which rely on the ITP size, shape, and location. The graphic view of the ITP contour position on the fabric image is a verification element in the optimal preprocessing algorithm. The presented results of the air permeability of two different plain weave structures confirm the need to optimize the algorithm of pre-image processing methods to precisely detect each individual ITP in the fabric image.
Rocznik
Strony
250--262
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
  • Institute of Architecture of Textiles, Faculty of Material Technologies and Textile Design, Lodz University of Technology, 116 Zeromskiego Street, Building A33, 90-924 Lodz, Poland
Bibliografia
  • [1] Kang, T. J., Choi, S. H., Kim, S. M. (2001). Automatic structure analysis and objective evaluation of woven fabric using image analysis. Textile Research Journal, 71(3), 261–270.
  • [2] Zupin, Z., Hladnik, A., Dimitrovski, K. (2011). Prediction of one-liner woven fabric air permeability using porosity parameters. Textile Research Journal, 82(2), 117–128.
  • [3] Turan, R. B., Okur, A. (2012). Investigation of pore parameters of woven fabrics by theoretical and image analysis methods. Journal of the Textile Institute, 103(8), 875–884.
  • [4] Polipowski, M., Wiecek, P., Wiecek, B., Pinar, A. (2017). Influence of selected parameters of the channels between threads on the air permeability of flat textile products with known characteristics. Fibres and Textiles in Eastern Europe, 25, 129–138.
  • [5] Polipowski, M., Wiecek, P., Wiecek, B., Pinar, A. (2017). Analysis of the effect of channel parameters between filaments and single fabric parameters on air permeability. Water vapour resistance and thermal resistance. Fibres and Textiles in Eastern Europe, 25, 79–86.
  • [6] Gooijer, H., Warmoeskerken, M. M. C. G., Groot Wassink, J. (2003). Flow resistance of textile materials. Part I: Monofilament fabrics. Textile Research Journal, 73(5), 437–443.
  • [7] Swery, E. E., Allen, T., Kelly, P. (2016). Automated tool to determine geometric measurements of woven textile using digital image analysis techniques. Textile Research Journal, 86(6), 618–635.
  • [8] Dulęba-Majek, M. (2009). Transmission of UV radiation through woven fabric in dependence on the inter-thread spaces. Fibres and Textiles in Eastern Europe, 17(2), 34–38.
  • [9] Dal, V., Atmaca, M., Yildiz, Z., Ceviz, N. O., Hes, L. (2016). Thermal comfort of woolen fabrics depending on physical properties. Journal of Natural Fibers, 13(6), 714–725.
  • [10] Dubrovski. P. D., Brezocnik, M. (2002). Using genetic programming to predict the macroporosity of woven cotton fabrics. Textile Research Journal, 72(3), 187–194.
  • [11] Tàpias, M., Ralló, M., Escofet, J., Algaba, I., Riva, A. (2010). Objective measure of woven fabric's cover factor by image processing. Textile Research Journal, 80(1), 35–44.
  • [12] Tapias, M., Rallo, M., Escofet, J. (2011). Automatic measurements of partial cover factors and yarn diameter in fabrics using image processing. Textile Research Journal, 81(2), 173–186.
  • [13] Owczarek, M. (2019). Morphometrical structural analysis of inter-thread pores in woven fabrics with the use of computer image analysis. Textile Research Journal, 89(23–24), 4858–4874.
  • [14] Ohta, K., Sakaue, K., Tamura, H. (1986). Pattern recognition of fabric surfaces. Journal of the Textile Machinery Society of Japan, 32(1), 7–10.
  • [15] Owczarek, M., Masajtis, J. (2002, October/December). Influence of initial image preparation on the result of the image digital analysis. Fibres & Textiles in Eastern Europe, 10(4), 31–32.
  • [16] Windyga, P. S. (2001). Fast impulsive noise removal. IEEE Transactions on Image Processing, 10, 173–179.
  • [17] Chang, C. C., Hsiao, J. Y., Hsieh, C. P. (2008). An adaptive median filter for image denoising. In: Second International Symposium on Intelligent Information Technology Application. Shanghai. China. 20–22 December 2008. Vol. 2, 346–350. Washington. DC: IEEE.
  • [18] Ibrahim, H., Kong, N. S. P. (2007). Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53, 1752–1758.
  • [19] Materka, A. (1991). Elements of digital image processing and analysis. Elementy cyfrowego przetwarzania i analizy obrazów. PWN Warszawa (Łódź). ISBN:83-01-10566-6 (in Polish).
  • [20] Tadeusiewicz, R., Korohoda, P. (1997). Computer image analysis and processing. Komputerowa analiza i przetwarzanie obrazów. FPT Kraków. ISBN:83-86476-15-X (in Polish).
  • [21] Bovik, A. (2000). Handbook of image & video processing. Academic Press (USA). ISBN:0-12-119790-5.
  • [22] Gonzalez, R. C., Wood, R. E. (2008). Digital image processing. Pearson Education (NJ). ISBN:0-13-168728-X.
  • [23] Sankowski, D., Mosorov, V., Strzecha, K. (2011). Processing and image analysis in industrial systems. Przetwarzanie i analiza obrazów w systemach przemysłowych. PWN. ISBN:978-83-01-16571-0 (in Polish).
  • [24] Stąpor, K. (2011). Methods of objects classification in computer vision. Metody klasyfikacji obiektów w wizji komputerowej. PWN. ISBN:978-83-01-16581-9 (in Polish).
  • [25] Owczarek, M., Masajtis, J. (2006). Evaluation of the Jeans fabric structure homogeneity by means of digital image analysis. Fibres & Textiles in Eastern Europe, 14(2), 41–45.
  • [26] Kinoshita, M., Hashimoto, Y., Akiyama, R., Uchiyama, S. (1989). Determination of weave type in woven fabric by digital image processing. Journal of the Textile Machinery Society of Japan, 35(2), 1–4.
  • [27] Kuo. F. J., Shih, Y., Huang, C., Su, T.-L., Liao, C. (2016). A novel image processing technology for recognizing the weave of fabrics. Text Research Journal, 86(3), 288–301.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bb583b2-5fed-44f3-be5d-bf26f5534ea4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.