PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In vitro evaluation of stainless steel orthodontic wires coated with TiO2 and TiO2:Ag for their anti-adhesive and antibacterial efficacy against Streptococcus mutans in a sucrose-enriched environment

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
Wydawca
Rocznik
Strony
78--94
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Dentofacial Orthopedics and Orthodontics, Wroclaw Medical University, Wroclaw, Poland
  • Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
  • Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Integrated Dentistry, Wroclaw Medical University, Wroclaw, Poland
  • Academic Dental Clinic, Wroclaw Medical University, Wroclaw, Poland
Bibliografia
  • [1] Bowen WH. Do we need to be concerned about dental caries in the coming millennium? Crit Rev Oral Biol Med. 2002;13:126–31.
  • [2] van Houte J. Role of micro-organisms in caries etiology. J Dent Res. 1994;73:672–81.
  • [3] Rölla G. Role of sucrose in plaque formation. Scand J Dent Res. 1985;93:105–11.
  • [4] Zero DT, van Houte J, Russo J. The intra-oral effect on enamel demineralization of extracellular matrix material synthesized from sucrose by Streptococcus mutans. J Dent Res. 1986;65:918–23.
  • [5] Aires CP, Tabchoury CPM, del Bel Cury AA, Koo H, Cury JA. Effect of sucrose concentration on dental biofilm formed in situ and on enamel demineralization. Caries Res. 2006;40:28–32.
  • [6] Cury JA, Rebello MAB, del Bel Cury AA. In situ relationship between sucrose exposure and the composition of dental plaque. Caries Res. 1997;31:356–60.
  • [7] Mizrahi E. Enamel demineralization following orthodontic treatment. Am J Orthod. 1982;82: 62–7.
  • [8] Årtun J, Brobakken B. Prevalence of carious white spots after orthodontic treatment with multibonded appliances. Eur J Orthod. 1986;8:229–34.
  • [9] Mhaske AR, Shetty PC, Bhat NS, Ramachandra CS, Laxmikanth SM, Nagarahalli K, Tekale PD. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus—an in vitro study. Prog Orthod. 2015;16:0–5.
  • [10] Marcusson A, Norevall L-l., Persson M. White spot reduction when using glass ionomer cement for bonding in orthodontics: a longitudinal and comparative study. Eur J Orthod 1997;19:233–42.
  • [11] Wang Y, Jayan G, Patwardhan D, Phillips KS. Antimicrobial and anti-biofilm medical devices: public health and regulatory science challenges. In Zheng Zhang, Victoria E. Wagner, editors. Antimicrobial coatings and modifications on medical devices. Cham, Swiotzerland: Springer International Publishing; 2017. p. 37–65.
  • [12] Slonik K, Mikulewicz M, Sarul M. Influence of aesthetic archwire coatings on bacterial adhesion. Coatings. 2022;12(8):1120. doi: 10.3390/coatings12081120
  • [13] Paradowska-Stolarz A, Wieckiewicz M, Owczarek A, Wezgowiec J. Natural polymers for the maintenance of oral health: review of recent advances and perspectives. Int J Mol Sci. 20(19)10337. doi: 10.3390/ijms221910337
  • [14] Bacela J, Łabowska MB, Detyna J, et al. Functional Coatings for Orthodontic Archwires-A Review. Materials (Basel). 2020;13(15):3257. doi: 10.3390/MA13153257.
  • [15] ISO/TS 80004-1:2015(en). Nanotechnologies — Vocabulary — Part 1: Core terms, https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en (accessed 5 August 2022).
  • [16] Deshmukh SP, Patil SM, Mullani SB, Delekar SD. Silver nanoparticles as an effective disinfectant: A review. Mater Sci Eng C Mater Biol Appl. 2019;97:954–65.
  • [17] Durán N, Durán M, de Jesus MB, Seabra AB, Favaro WJ, Nakazato G. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016;12:789–99.
  • [18] Borzabadi-Farahani ALI, Borzabadi E, Lynch E. Nanoparticles in orthodontics, a review of antimicrobial and anti-caries application. Acta Odontol Scand. 2013;72:413–7.
  • [19] Visai L, de Nardo L, Punta C, Melone L, Ciogada A, Imbriani M, Arciola CR. Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs. 2011;34:929–46.
  • [20] Mollabashi V, Farmany A, Alikhani MY, Alikhani MY, Sattari M, Soltanian AR, Kahvand P, Banjisafar Z. Effects of TiO 2-coated stainless steel orthodontic wires on Streptococcus mutans bacteria: a clinical study. Int J Nanomedicine. 2020;15:8759–66.
  • [21] Fatani EJ, Almutairi HH, Alharbi AO, Alnakhli YO, Diovakar DD, Muzaheed, et al. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb Pathog. 2017;112:190–4.
  • [22] Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 20209;109(20):8996–9031.
  • [23] Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020;15:2555–62.
  • [24] Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–49.
  • [25] Pantic I. Application of silver nanoparticles in experimental physiology and clinical medicine: current status and future prospects. Rev Adv Mater Sci. 2014;37:15–9.
  • [26] Wang D, Chen C, Liu X, Lei T. Effects of sol-gel processing parameters on the phases and microstructures of HA films. Colloids Surf B Biointerfaces. 2007;57: 237–42.
  • [27] Kielan-Grabowska Z, Bacela J, Ziety A, Seremak W, Gawlik-Maj M, Kawala B, et al. Improvement of properties of stainless steel orthodontic archwire using TiO2:Ag coating. Symmetry 2021;13:1734.
  • [28] Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res. 2008; 42:409–418.
  • [29] Bacela JJ, Kielan-Grabowska Z, Borak B, Sobieszczanska B, Walczuk U, Kawala B, et al. Antiadherent and antibacterial properties of TiO2-coated and TiO2:Ag-coated stainless steel orthodontic wires against S. mutans bacteria. Acta Bioeng Biomech. 24. 2022; 24(3):107–18. doi: 10.37190/ABB-02109-2022-03.
  • [30] Decker EM, Klein C, Schwindt D, von Ohle C. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. Int J Oral Sci. 2014;6:195–204.
  • [31] Pratten W, Barnett W. In vitro studies of the effect of antiseptic-containing mouthwashes on the formation and viability of Streptococcus sanguis biofilms. J Appl Microbiol. 2002;84:1149–55.
  • [32] Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freiores IA, et al. The biology of Streptococcus mutans. Microbiol Spectr. 7(1). doi: 10.1128/ microbiolspec.GPP3-0051-2018.
  • [33] Colby SM, Russell RRB. Sugar metabolism by mutans streptococci. J Appl Microbiol. 1997;83:80S–8S.
  • [34] Boyd JD, Korotkova N, Grady ME. Adhesion of biofilms on titanium measured by laser-induced spallation. Exp Mech. 2019;59:1275.
  • [35] Özyildiz F, Uzel A, Hazar AS, Güden M, Ölmez S, Aras I, Karaboz I. Photocatalytic antimicrobial effect of TiO2 anatase thin-film-coated orthodontic arch wires on 3 oral pathogens. Turkish Journal of Biology 2014;38:289–95.
  • [36] Espinosa-Cristóbal LF, López-Ruiz N, Cabada-Tarín D, et al. Antiadherence and antimicrobial properties of silver nanoparticles against streptococcus mutans on brackets and wires used for orthodontic treatments. J Nanomater. 2018. doi: 10.1155/2018/9248527.
  • [37] Nafarrate-Valdez RA, Martínez-Martínez RE, Zaragoza-Contreras EA, Áyala-Herrera JL, Dominguez-Pérez RA, Reyes-López, et al. Anti-adherence and antimicrobial activities of silver nanoparticles against serotypes C and K of Streptococcus mutans on orthodontic appliances. Medicina 2022;58:87
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8baf3af9-d004-4dc2-a473-838d976da791
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.