PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of Concentrations of Selected Metals in the Groundwater in the Wielkopolska National Park

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena stężeń wybranych metali w wodzie gruntowej na terenie Wielkopolskiego Parku Narodowego
Języki publikacji
EN
Abstrakty
EN
This paper presents a statistical analysis of concentrations for selected metals in groundwater samples collected from 15 sites located in the Wielkopolska National Park in four periods of 2017. Concentrations of such metals as B, Ba, Ca, Fe, K, Mg, Mn, Na and Zn were analysed. Statistical analysis identified two groups of metals in terms of similarity in their concentrations in groundwater. One group is composed of Ba, Ca, K, Mg and Na, while the other comprises B, Fe, Mn and Zn. The analyses showed also considerable variation of investigated elements between various well locations. Three types of location were distinguished: situated nearby open water bodies, situated in the lowest parts of relief and located in the upper and middle parts of slopes.
PL
W pracy przedstawiono statystyczną analizę stężeń wybranych metali w próbkach wody gruntowej pobieranych w roku 2017 w 15 miejscach na terenie Wielkopolskiego Parku Narodowego. Analizie poddano stężenia następujących metali: B, Ba, Ca, Fe, Mg, Mn, Na i Zn. Obliczenia statystyczne pozwoliły wydzielić dwie grupy pierwiastków wykazujące podobną zmienność stężeń. Do pierwszej zaliczono Ba, Ca, K, Mg i Na, podczas gdy do drugiej zaliczono B, Fe, Mn i Zn. Analizy wykazały również znaczącą zmienność stężeń badanych metali wynikającą z położenia miejsca poboru próbki w rzeźbie terenu. Wydzielone trzy typy lokalizacji to: położone w bezpośrednim sąsiedztwie wód powierzchniowych, położone w najniższych partiach terenu oraz położone w górnych i środkowych partiach zboczy.
Rocznik
Strony
1028--1043
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Poznan University of Life Sciences, Poland
autor
  • Poznan University of Life Sciences, Poland
  • Poznan University of Life Sciences, Poland
Bibliografia
  • Allen, A., Chapman, D. (2001) Impacts of afforestation on groundwater resources and quality. Hydrogeology Journal, 9, 390-400. DOI: https://doi.org/10.1007/s100400100148
  • Aniszewski, A. (2020). Impact of ground adsorption capacity on the change in chemical composition of groundwater. Archives of Environmental Protection, 46(2), 35-43. DOI: 10.24425/aep.2020.133472
  • Buttle, J.M. (2011). The Effects of Forest Harvesting on Forest Hydrology and Biogeochemistry. In: Levia D., Carlyle-Moses D., Tanaka T. (eds.) Forest Hydrology and Biogeochemistry. Ecological Studies (Analysis and Synthesis), 216. DOI: https://doi.org/10.1007/978-94-007-1363-5_33.
  • Chrzan, A., Formicki, G., Marko-Worłowska, M. (2013). Heavy metals concentration in forest soils. Fresenius Environmental Bulletin, 22(7), 1993-1996.
  • Douarte, L., Marques, J.E., Teodoro A.C. (2019). An Open Source GIS-Based Application for the Assessment of Groundwater Vulnerability to Pollution. Environments 2019, 6(7), 86. DOI: 10.3390/environments6070086.
  • Gu, C., Zhang, Y., Peng, Y. et al. Spatial Distribution and Health Risk Assessment of Dissolved Trace Elements in Groundwater in southern China. Sci Rep 10, 7886 (2020). DOI: 10.1038/s41598-020-64267-y
  • He, S., Li, P., Wu, J., Elumalai, V., Adimalla, N., (2019). Groundwater quality under land use/land cover changes: A temporal study from 2005 to 2015 in Xi’an, Northwest China. Human and Ecological Risk Assessment: An International Journal. 1-27. DOI: https://doi.org/10.1080/10807039.2019.1684186
  • Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473-481. DOI: https://doi.org/10.1016/j.chemosphere.2017.02.029.
  • Kong, M., Zhong, H., Wu, Y., Liu, G., Xu, Y., Wang, G. (2019). Developing and validating intrinsic groundwater vulnerability maps in regions with limited data: A case study from Datong City in China using DRASTIC and Nemerow pollution indices. Environ. Earth Sci., 78, 262. DOI: https://doi.org/10.1007/s12665-019-8255-7.
  • Krogulec, E. (2013). Intrinsic and Specific Vulnerability of Groundwater in a River Valley-Assessment, Verification and Analysis of Uncertainty. J. Earth Sci. Clim. Change, 4: 159. DOI: https://doi.org/10.4172/2157-7617.1000159
  • Lis, J., Pasieczna, A. (2005). Geochemical Atlas of Poznan and Environs. Polish Geological Institute.
  • Loska, K., Wiechuła, D. (2003). Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere, 51, 723-733. DOI: https://doi.org/10.1016/S0045-6535 (03)00187-5.
  • Lowrance, R., Lee, S.A., Newbold J.D., Schnabel, R.R., Groffman P.M., Denver, J.M., Correll, D.L., Gilliam, J.W., Robinson, J.L., Brinsfield, R.B., Staver, K.W., Lucas, W., Todd, A.H. (1997). Water Quality Functions of Riparian Forest Buffers in Chesapeake Bay Watersheds. Environmental Management, 21, 5, 687-712. DOI: https://doi.org/10.1007/s002679900060
  • Luczaj, J. (2016). Groundwater Quantity and Quality. Resources, 5(1), 1-4. DOI: https://doi.org/10.3390/resources5010010
  • Luczaj. J, Masarik, K. (2015). Groundwater Quantity and Quality Issues in a Water-Rich Region: Examples from Wisconsin, USA. Resources, 4, 323-357; DOI: doi:10.3390/resources4020323.
  • Małecki, J.J., Kadzikiewicz-Schoeneich, M., Eckstein, Y., Szostakiewicz-Hołownia, M., Gruszczyński, T. (2017). Mobility of copper and zinc in near-surface groundwater as a function of the hypergenic zone lithology at the Kampinos National Park (Central Poland). Environ. Earth Sci. 76(7), 276, DOI: 10.1007/s12665-017-6527-7.
  • Mannerkoski, H., Finer, L., Piirainen, S., Starr, M. (2005). Effect of clearcutting and site preparation on the level and quality of groundwater in some headwater catchments in eastern Finland. Forest Ecol. Management., 220, 107-117
  • McHale, M.R., Burns, D.A., Lawrence, G.B., Murdoch, P.S. (2007). Factors controlling soil water and stream water aluminum concentrations after a clearcut in a forested watershed with calcium-poor soils. Biogeochemistry. 84, 311-331. DOI: https://doi.org/10.1007/s10533-007-9124-0
  • Miler, A. (2018). Climate of the Wielkopolski National Park. Forestry Letters, 111, 6-11.
  • Mozejko, J., (2012). Detecting and Estimating Trends of Water Quality Parameters. Water Quality. Monitoring and Assessment, 95-120. DOI: https://doi.org/10.5772/2411.
  • Nawaz, R., Parkpian, P., Garivait, H., Anurakpongsatorn P., DeLaune, R.D. (2012). Impact of acid rains on base cations, aluminum, and acidity development in highly weathered soils of Thailand. Communications in Soil Science and Plant Analysis, 43, 1382-1400, DOI: 10.1080/00103624.2012.670347.
  • Nowak, G. (1999). Struktura użytkowania gruntów w Wielkopolskim Parku Narodowym.Morena, 6, 39-44.
  • Rozporządzenie Ministra Środowiska z dnia 21 grudnia 2015 r. w sprawie kryteriówi sposobu oceny stanu jednolitych części wód podziemnych. https://prawo.sejm.gov.pl/isap.nsf/download.xsp/WDU20160000085/O/D20160085.pdf
  • Rusanen, K., Finer, L., Antikainen, M., Korkka-Niemi, K., Backman, B., Britschgi, R.(2004). The effect of forest cutting on the quality of groundwater in large aquifers in Finland. Boreal Environment Research, 9, 253-261.
  • Umar, R., Ahmed, I., Alam, F. (2009). Mapping groundwater vulnerable zones using modified DRASTIC approach of an alluvial aquifer in parts of Central Ganga Plain, Western Uttar Pradesh. J. GeolSoc India 73:193-201. DOI: https://doi.org/10.1007/s12594-009-0075-z.
  • Xu, J., Chen,Umar Y., Zheng, L., Liu, B., Liu, J., Wang, X. (2018). Assessment of Heavy Metal Pollution in the Sediment of the Main Tributaries of Dongting Lake, China. Water 10, 1060. DOI: https://doi.org/10.3390/w10081060.
  • Van Duijvenbooden, W.V., Waegeningh, H.G., (1987). Vulnerability of Soil and Groundwater to Pollutants. In Proceedings and Information No. 38 of International Conference Held in the Netherlands; TNO Committee on Hydrological Research: Delft, The Netherlands.
  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Rajiv Ganthi, R., Chidambaram, S., Anandhan, P., Manivannan, R., Vasudevan, S. (2010). Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ. Monit. Assess. DOI: 10.1007/s10661-009-1302-1.
  • Vitale, S., Barbieri, M., Nigro, A., Sappa. (2017). Groundwater: a matter of quality and quantity in Limpopo National Park. Senses and Sciences, 4, 400-409. DOI: https://doi.org/10.14616/sands-2017-3-400409.
  • Wachniew, P., Zurek, A.J., Stumpp, C.; Gemitzi, A., Gargini, A., Filippini, M.. Rozanski, K., Meeks, J., Kværner, J., Witczak, S. (2016). Toward operational methods for the assessment of intrinsic groundwater vulnerability: A review. Crit. Rev. Environ. Sci. Technol. 46, 827-884. DOI: https://doi.org/10.1080/10643389.2016.1160816.
  • Walna, B. (2013). Interdisciplinary study of post-agricultural pollution in the Wielkopolski National Park (Poland). Journal of Integrative Environmental Sciences, 10, 17- 38, DOI: 10.1080/1943815X.2012.759976.
  • Walna, B., Drzymała, S., Siepak, J. (2000). The Impact of Acid Rain on Potassium and Sodium Status in Typical Soils of the Wielkopolski National Park (Poland). Water, Air and Soil Pollution, 121(1), 31-41, DOI: 10.1023/A:1005239229352.
  • Walna B., Siepak M. (2012). Heavy metals: their pathway from the ground, groundwater and springs to Lake Góreckie (Poland). Environ. Monit. Assess. 184, 3315-3340. DOI: 10.1007/s10661-011-2191-7.
  • Zhang, Z., Xiao, C., Adeyeye, O., Yang, W., Liang, W. (2020). Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water, 12, 534, DOI: 10.3390/w12020534.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8bad4d1c-312b-491f-9c89-9acc759916d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.