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TEXTURE-BASED IDENTIFICATION OF
DYSTROPHY PHASE. INDICATING THE MOST

SUITABLE FEATURES FOR THERAPY TESTING

In this study, texture analysis (TA) is applied for characterization of dystrophic muscles visualized
on T2-weighted Magnetic Resonance (MR) images. The study proposes a strategy for indicating the
textural features that are the most appropriate for testing the therapies of Duchenne muscular dystrophy
(DMD). The strategy considers that muscle texture evolves not only along with the disease progression
but also with the individual’s development. First, a Monte Carlo (MC) procedure is used to assess the
relative importance of each feature in identifying the phases of growth in healthy controls. The features
considered as age-dependent at a given acceptance threshold are excluded from further analyses. It is
assumed that their application in therapies’ evaluation may entail an incorrect assessment of dystrophy
response to treatment. Next, the remaining features are used in differentiation among dystrophy phases.
At this step, an MC-based feature selection is applied to find an optimal subset of features. Experiments
are repeated at several acceptance thresholds for age-dependent features. Different solutions are finally
compared with two classifiers: Neural Network (NN) and Support Vector Machines (SVM). The study
is based on the Golden Retriever Muscular Dystrophy (GRMD) model. In total, 39 features provided
by 8 TA methods (statistical, filter- and model-based) are tested.

1. INTRODUCTION

Duchenne muscular dystrophy (DMD) is a hereditary genetic disorder resulting from a
deficiency of dystrophin, a protein that plays a key role in supporting fiber strength [12]. It is the
most common and the most severe muscular dystrophy, affecting predominantly male children
and young men. The disease is characterized by progressive muscle destruction, which implies
decrease of mobility, deformities, cardiomyopathy, and respiratory failure. Despite extensive
attempts to develop an effective therapy for DMD, there is still no cure, and affected individuals
usually die in their second or third decade of life [24].

An important problem confronted while elaborating new therapeutic strategies is the choice
of tools for the assessment of treatment effects. The need for multiple repetition of such an
assessment, often over a short period of time, calls into question the application of generally
effective invasive methods, such as histological examination of biopsy specimens. In fact,
needle biopsies can aggravate the condition of muscles already damaged by the disease.
Other measurement protocols, e.g. based on evaluation of motor function, respiratory function,
muscle strength, or disability, are not entirely satisfactory and sometimes difficult to perform
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in non-ambulant patients [7]. In this context, an increasing interest is being shown in the
use of Magnetic Resonance Imaging (MRI), which is non-invasive and can provide relevant
information about the dystropy progression [9]. However, the correct interpretation of image
content is not a trivial task and still under investigation. The results obtained so far, indicate
that this problem can be successfully managed with the use of texture analysis (TA) [2].

Several studies have already evaluated the usefulness of texture analysis in characterization
of muscular disorders (they are discussed in the next section). All of them considered only
the cases of untreated dystrophy, progressing along with the growth of an individual, from
the earliest months of its life. If texture analysis was to be applied in testing the therapy’s
effects, it should be taken into account that muscle texture can evolve over time, as a result
of two processes occurring simultaneously: the individual’s development and the course of the
disease. Identifying the stage of untreated dystrophy does not require evaluation how each of
these processes separately influences the characteristics of muscle texture. When therapies are
introduced, the second process can be slowed down, while the first one still advances. In that
case, special attention should be paid to those textural features which values may evolve under
the influence of the individual’s development. Ignoring such an evolution during the assessment
of treatment effects can alter the correct evaluation of tested therapy.

In this study, MRI texture analysis is used in classification-based system for identifying
phases of dystrophy progression. The study focuses on indicating textural features that can be
the most appropriate for the assessment of DMD therapies. First, it finds and eliminates features
which values may evolve along with the individual’s growth. This step is based on a Monte
Carlo (MC) selection procedure (originally described in [3]) performed when stages of growth
in healthy dogs are recognized. Features with a relatively high frequency of selections are
considered to be age-dependent, as they contribute the most to the age identification. Further, the
work assesses what is the best possible differentiation of dystrophy phases that can be achieved
with only the use of remaining features, independent of age. At this step, two classifiers are
used for evaluating different subsets of features: Neural Network (NN) [1] and Support Vector
Machines (SVM) [27]. Moreover, the study compares results achieved at different acceptance
thresholds for age-dependent features and attempts to find the optimal threshold. In total, 39
features calculated with 8 TA methods (statistical, filter- and model-based) are tested.

The study is based on the Golden Retriever Muscular Dystrophy (GRMD) canine model,
commonly used in studies on DMD pathogenesis and treatment development [18]. Three phases
of canine growth and/or dystrophy progression are distinguished in this model, in reference to
histological changes in muscle structure [2]: the first phase (0-4 months of age), the second
phase (more than 4 to 6 months), and the third phase (more than 6 months to death).

The next section includes an overview of related works. Section 3 describes the strategy
proposed in this study. Next, details of the experimental setup are given. In Section 5 the results
are presented and discussed. Conclusions and future work are outlined in the last section.

2. RELATED WORK

So far, several studies on the possibility of applying TA for characterization of muscular
disorders have been conducted using different animal models. They investigated the problem
of automated classification of healthy and dystrophic muscles [5], [28], [30], differentiation
among several phases of dystrophy progression in affected individuals [6], [20], or attempted
to describe changes in muscle properties resulting from the disease development [8], [28]. They
mainly used statistical methods (first- and second-order statistics), as well as different filter-
and model-based approaches. These works demonstrated that texture analysis can outperform
standard radiologists’ clinical evaluation, and that a relatively high recognizability of considered
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muscle groups can be achieved if textural features are properly selected. In general, effective
features have turned out to be those derived from the co-occurrence matrices (COM) [15], the
run length matrices (RLM) [11], or the gray level difference matrices (GLDM) [29].

Widely available literature does not provide a description of such a study that concerns
a texture-based classification system for identifying dystrophy phase and, at the same time,
focuses on finding (and eliminating) those features which values may evolve along with the
individual’s development. In fact, previous studies examined only the possibility of using TA
to recognize a stage of untreated dystrophy, progressing with age, and did not consider its
application for therapy testing. Some works, however, deserve special attention.

Martins-Bach et al. [20] investigated the potential of texture analysis in characterizing mus-
cles in four mouse models of muscular dystrophy: the severely affected Largemyd mouse, the
worst double mutant mdx/Largemyd mouse, the mildly affected mdx mouse, and normal mice
(represented by 12, 9, 13, and 13 subjects, respectively). Various measurements derived from
MRI T2-weighted images (e.g. transverse relaxation times of MRI contrast) were compared
to selected textural features. In total, 371 features provided by the MaZda software [25] were
analyzed. The best texture-based characteristics were those derived from the co-occurrence
matrices: contrast- and entropy-based (30 features). They allowed to unambiguously identify
all considered mouse strains and outperformed non-texture-based muscle T2 values.

The study [6] analyzed muscle textures on T2-weighted MRI images derived from 5 GRMD
dogs. The relative importance of each textural feature in differentiating among three dystrophy
phases was assessed by a Monte Carlo procedure. In total, 39 features obtained from 8 TA
methods were tested. Four different types of muscles were considered. Three classifiers were
used: adaptive boosting [10] with a C4.5 tree [23], NN, and SVM. Experiments enabled to
find the most discriminative features (mainly the COM-, RLM-, and GLDM-based ones) and
demonstrated that the optimal set of features is different for each muscle. Moreover, they
revealed that differentiation among three phases of dystrophy progression is quite a difficult
task, as it was possible to recognize the dystrophy phase in a maximum of 71.3% cases.

Fan et al. [8] differentiated between GRMD and healthy dogs at three different dog’s ages.
Their work was performed on T2-weighted images with and without fat saturation, derived from
10 GRMD and 8 healthy dogs. Several MRI imaging biomarkers and three texture biomarkers
were quantified in seven muscles. Three textural features were used: a gray level histogram-
based entropy, and RLM-based short run emphasis and run length non-uniformity. The latter
one performed best, giving statistically different values for GRMD and healthy dogs at each
phase. Moreover, classification done with Linear Discriminant Analysis (LDA) showed better
potential of textural features in comparison with other tested biomarkers. Finally, the study
demonstrated that muscle texture may also evolve along with the dog’s development. However,
the research did not attempt to determine in which way the dog’s development influences the
summary changes in textural properties of affected muscles.

3. INDICATING THE MOST APPROPRIATE FEATURES FOR THERAPY TESTING

Three steps can be distinguished in the proposed strategy. The first one consists in indicating
the features that demonstrate a relatively high usefulness in identifying phases of growth in
healthy dogs. Such features (or their combinations) may potentially evolve under the influence
of the individual’s development. In this study, the feature usefulness for a given classification
problem is determined by a frequency of feature selections in the modified Monte Carlo
procedure [6]. This approach is based on the finding that a feature that is completely useless
by itself can show its significant potential when taken with others [13]. Therefore, the MC
procedure assesses the feature’s ability to perform well regardless the combination in which
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the feature is found. In fact, classifiers applied in the system for dystrophy identification, make
their decisions basing on the combinations of many features and not on each feature separately.

In the second step, features previously demonstrating a relatively high frequency of selec-
tions (exceeding a given acceptance threshold, accThr) are considered as age-dependent and
eliminated from further investigations. However, the choice of the threshold is not obvious.
Accepting features too frequently selected (i.e. contributing too much to the age identification)
may result in an inaccurate evaluation of dystrophy response to treatment. In turn, setting the
threshold at a very low level may entail discarding of most of the features, also those that
depend much more on the disease progression than on the individual’s development. Due to
this reason, several acceptance thresholds are tested within this study.

Finally, the remaining features (considered as age-independent at a given acceptance thresh-
old) are used in differentiation among dystrophy phases in affected individuals. At this step,
the modified Monte Carlo procedure is run again and features with the highest frequencies of
selections are considered as the most useful in dystrophy identification. After completing the
modified MC procedure, features are ranked according to their frequency of selections, from
the most to the least selected, and different numbers of the top-ranked features are tested. The
subset of features ensuring the best recognition of dystrophy phase is considered optimal.

4. EXPERIMENTAL SETUP

4.1. DATABASE

The experiments were conducted on a database of images provided by the Nuclear Magnetic
Resonance Laboratory of the Institute of Myology in Paris, France. All the details concern-
ing the acquisition protocols are presented in [26]. Images were acquired on a 3T Siemens
Magnetom Trio TIM scanner with a standard, circularly polarized extremity coil. The in-plane
resolution was 0.56 mm × 0.56 mm, the slice thickness was 3 mm, and the inter-slice gap was
7.5 mm. The slice orientation was axial with respect to the long axis of the muscle. As for the
T2-weighted image series, the repetition time (TR) was 3,000 ms, the first echo time (TE1)
was 6.3 ms and the second echo time (TE2) was 50 ms. Each series contained from 12 to 14
images. All images had a size of 240 × 320 pixels and were provided in Analyze format.

Due to a relatively high cost of the trial, only five GRMD and five healthy dogs were involved
in the experiment. Each dog was imaged from 3 to 5 times over a maximum of 14 months.
In total, 38 examinations were performed. Each examination was assigned to one of three
mentioned phases of canine growth and/or dystrophy progression. In total, the first, second and
third phase were represented by 14, 9, and 15 examinations, respectively.

Four types of muscles were considered: the Extensor Digitorum Longus (EDL), the Gastroc-
nemius Lateralis (GL), the Gastrocnemius Medialis (GM), and the Tibial Cranialis (TC). For
each muscle, up to two Regions of Interest (ROIs) were delineated on each image – a maximum
of one within each limb, left and right. Only ROIs of at least 100 pixels were analyzed. The
numbers of used ROIs are given in Table 1, separately for each cohort type (GRMD, healthy),
each muscle, and each phase. In turn, Table 2 contains the average ROIs’ sizes.

4.2. TEXTURE-BASED TISSUE CHARACTERIZATION

First, images were pre-processed as described in [5] and converted from initial Analyze
format to 8-bit BMP format with 256 gray levels. Then, muscular tissue within each ROI was
characterized using 8 different texture analysis methods implemented by the author as a part
of the Medical Image Processing application [4]. In total, 39 textural features were calculated:
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Table 1. Numbers of accepted ROIs

phase cohort
type

Muscle
EDL GL GM TC

first healthy 52 30 60 73
GRMD 45 43 64 53

second healthy 48 24 37 64
GRMD 56 34 43 87

third healthy 136 85 113 157
GRMD 73 31 60 81

Table 2. Average sizes of accepted ROIs

phase cohort
type

Muscle
EDL GL GM TC

first healthy 202 161 290 205
GRMD 156 189 293 165

second healthy 239 184 395 255
GRMD 189 220 379 250

third healthy 279 220 426 316
GRMD 160 199 328 236

• Avg (average), V ar (variance), Skew (skewness), and Kurt (kurtosis) – first order statis-
tics, obtained from a gray level histogram (abbreviated GLH),

• AngSecMom (angular second moment), Contrast (contrast), Corr (correlation), SumSqr
(variance), InvDiffMom (inverse difference moment), SumAvg (sum average), SumV ar
(sum variance), SumEntr (sum entropy), Entr (entropy), DiffV ar (difference variance),
and DiffEntr (difference entropy), from the co-occurrence matrices (COM),

• ShortEmph (short run emphasis), LongEmph (long run emphasis), GlNonUni (gray
level non-uniformity), RlNonUni (run length non-uniformity), Fraction (fraction of
image in runs), LowGlrEmph (low gray level run emphasis), HighGlrEmph (high gray
level run emphasis), and RlEntr (run length entropy), from the run length matrices (RLM),

• dContrast (contrast), dAngSecMom (angular second moment), dEntr (entropy), dMean
(mean), and dInvDiffMom (inverse difference moment), form the gray level difference
matrices (GLDM),

• EntrE3L3, EntrS3L3, EntrS3E3, EntrE3E3, and EntrS3S3 – entropy of an image
region filtered, respectively, with the following pairs of the Laws’ masks: E3L3 and L3E3,
S3L3 and L3S3, S3E3 and E3S3, E3E3 and E3E3, and S3S3 and S3S3 (LTE),

• GradAvg (average), GradV ar (variance), GradSkew (skewness), and GradKurt (kur-
tosis), from the gradient matrix (GM),

• FractalDim – fractal dimension based on the fractional Brownian motion model (FB),
• AutoCorr – normalized autocorrelation coefficient (AC).

A detailed description of the above features and their reference to the properties of muscle
tissue, as well as basis of corresponding TA methods can be found in [19].

The construction of the co-occurrence matrices, run length matrices, and gray level difference
matrices was performed with a reduced number of gray levels, 64 instead of initial 256. Four
standard directions of pixel runs (0◦, 45◦, 90◦, and 135◦) were considered for the COM, RLM,
GLDM, FB, and AC methods. Due to an irregular shape of many ROIs, only two smallest
possible distances between pixels in pairs (1 and 2) were taken into account when applying the
COM, GLDM, FB, and AC methods. If the same feature was calculated at several directions
and (if applied) distances between pixels in pairs, its average value was used.

4.3. MONTE CARLO-BASED ASSESSMENT OF FEATURE IMPORTANCE

The modified Monte Carlo procedure, used in this study, consists in multiple repetitions of a
single selection experiment, run on a “truncated” data set. Such data set is created by a random
choice of a fixed number of observations from the initial data set, described with a relatively
small part of initially used features. Each time, different subset of observations and features
is chosen. After repeating this a relatively large number of times, a frequency of selections
(“incidence frequency rate”, IFR) is calculated for each feature. This is the ratio between the
number of cases in which the feature was selected and the number of times it occurred in the
subsets of randomly chosen features in truncated data sets, subjected to a selection.
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A single selection experiment, executed within this procedure, was repeated 200,000 times.
Truncated data sets were always composed of 2/3 of initial number of observations described
by 20% of the initially used features (here, 8 features were always randomly chosen). The space
of subsets of features was searched using the best-first strategy with the Sequential Forward
Selection (SFS) algorithm [22]. During the search, a supervised wrapper method [17] combined
with the C4.5 decision tree classifier and a 10-fold cross-validation was applied for evaluation
of candidate subsets of features. All the selection procedures were carried out with the Weka
software [14]. Additional tools for generating truncated data sets, as well as creating feature
incidence frequency rankings were implemented by the author in the C++ language.

4.4. CLASSIFICATION

Classification was also performed using Weka. Five classifiers were applied to assess the
potential of different subsets of features that do not depend (or weakly depend) on age:

• C4.5 Decision Tree (DT),
• Ensemble of Classifiers with an Adaptive Boosting voting scheme – AdaBoostM1 (AB)

[10] using the C4.5 classifier as the underlying algorithm,
• Logistic Regression (LR) [16]
• back-propagation Neural Network with a sigmoidal activating function and one hidden

layer wherein the number of neurons was equal to the average value of the number of
features and the number of classes,

• nonlinear Support Vector Machines using the Sequential Minimal Optimization (SMO)
algorithm [21] and a second-degree polynomial kernel.

The classification accuracies were assessed using 10-fold cross-validation, repeated 10 times.

5. RESULTS AND DISCUSSION

The course of experiments reflected the three steps enumerated and described in Section 3.
All the experiments were carried out separately for each muscle: EDL, GL, GM, and TC.

5.1. DIFFERENTIATION AMONG PHASES OF GROWTH IN HEALTHY DOGS

For each feature its relative frequencies of selections obtained with the modified MC proce-
dure are given in Table 3. It can be observed that these frequencies vary, often significantly,
among different types of muscles. However, some features demonstrate their high importance
regardless the muscle that they are calculated for. The most frequently selected features, and
therefore considered as the most contributing to the age identification, are: Avg, from the
gray level histogram, LowGlrEmph and HighGlrEmph, from the run length matrices, and
SumAvg, from the co-occurrence matrices. All of them were selected in more than 50% cases
for each muscle. Several other features show their high usefulness only when derived from
some muscles, for example FractelDim (from the EDL, GM, and TC muscles) or RLM-
based GlNonUni and RlNonUni (from the GM and TC muscles). It should be noted that
the COM- and RLM-based features were considered as generally quite effective in dystrophy
identification process in previously reported studies (e.g., in [5], [6], [8], [28]). Now, it was
discovered that they may evolve along with the individual’s development. Therefore, a “good
ability to recognize a dystrophy phase”, stated for them in above-cited works, could also be
related to their changes caused by dog’s growth (with which the dystrophy progresses as well).

The least frequently selected features, i.e. the least contributing to the age identification, with
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Table 3. Percentage of feature selections obtained by the modified Monte Carlo procedure when phases of growth in healthy

dogs were differentiated. Results are given separately for each muscle: EDL, GL, GM, and TC.

Feature \ Muscle EDL GL GM TC
Avg 57.90 77.49 78.68 67.48
V ar 19.57 12.98 32.74 34.57
Skew 62.54 13.55 24.32 29.00
Kurt 14.11 12.12 25.22 51.54
AngSecMom 34.20 13.69 33.49 41.82
Contrast 25.00 12.44 23.44 30.71
Corr 12.20 7.81 38.90 33.47
SumSqr 29.76 13.45 43.06 29.50
InvDiffMom 26.66 11.74 25.88 36.11
SumAvg 57.03 78.77 82.52 60.55
SumV ar 24.06 10.78 38.02 30.67
SumEntr 27.81 10.00 47.43 36.38
Entr 31.08 11.83 38.78 44.89
DiffV ar 21.46 13.73 39.44 25.02
DiffEntr 29.04 9.89 26.60 25.13
ShortEmph 23.94 9.78 26.40 28.62
LongEmph 20.23 11.12 38.13 39.79
GlNonUni 11.95 33.74 73.96 98.20
RlNonUni 18.69 42.06 63.51 87.11
Fraction 19.98 8.13 38.41 28.00

Feature \ Muscle EDL GL GM TC
LowGlrEmph 57.72 84.68 81.71 55.90
HighGlrEmph 55.59 73.40 78.95 56.91
RlEntr 27.09 9.44 57.94 33.03
dContrast 25.55 12.10 23.58 30.31
dAngSecMom 30.91 9.66 26.46 30.95
dEntr 27.54 9.87 26.00 25.43
dMean 29.01 12.36 26.27 28.19
dInvDiffMom 26.15 11.83 25.56 35.63
EntrE3L3 32.17 8.81 71.29 36.72
EntrS3L3 18.92 16.18 23.35 38.90
EntrS3E3 17.53 19.84 42.51 36.91
EntrE3E3 46.18 13.87 48.00 33.72
EntrS3S3 34.78 29.90 37.20 50.75
GradAvg 24.45 11.35 35.16 31.07
GradV ar 20.20 18.10 49.97 27.61
GradSkew 25.21 23.02 23.59 38.65
GradKurt 24.63 15.56 19.06 28.13
FractalDim 77.73 7.13 52.63 56.19
AutoCorr 92.75 15.27 20.46 21.53

no more than 10% of selections, are exclusively derived from the GL muscle. These include:
Corr, SumEntr, and DiffEntr (COM-based), ShortEmph, Fraction, and RlEntr (RLM-
based), dAngSecMom and dEntr (GLDM-based), EntrE3L3 (LTE), and FractalDim. Many
of them are based on different measures of texture entropy.

Finally, it could be deduced that setting the acceptance threshold (accThr) at 50% of feature
selections implies discarding a relatively small number of features: 7, 4, 9, and 9 for the EDL,
GL, GM, and TC muscles, respectively. The further consecutive reductions of this threshold by
5% cause rather small changes in obtained subsequent sets of discarded features. Nevertheless,
setting this threshold at 25% results in a rejection of almost all features – 23, 32, and 38 (of
39) for the EDL, GM, and TC muscles, respectively. An exception is only observed for the GL
muscle, the texture of which seems to show a relatively small dependence on age. The next
experiments were repeated at three values of accThr: 50%, 40%, and 30%.

5.2. IDENTIFYING DYSTROPHY PHASE WITH AGE-INDEPENDENT FEATURES

After discarding features considered as age-dependent at a given acceptance threshold, the
remaining ones were applied in identifying the dystrophy phase. As differentiation among
the three considered phases turned out to be quite a difficult problem, experiments were also
performed for the binary classification tasks, differentiating only between the adjacent dystrophy
phases: (i) the first phase and the second phase, (ii) the second phase and the third phase.

For each classification task, the classification accuracies (with standard deviation) obtained
for optimal subsets of accepted features are presented in Table 4. The results achieved with
all tested features (including the age-dependent ones) are given here for reference. Although
each of the five classifiers (DT, AB, LR, NN, and SVM) was applied in this experiment, only
the results obtained by the last two classifiers are shown and discussed here. In fact, the C4.5
Decision Tree provided the least satisfying classification qualities (they were up to 10% lower
than those obtained with the use of the NN or SVM classifiers). In turn, the application of
Logistic Regression and AdaBoostM1 algorithm led to the results similar (but often slightly
worse) to those obtained with the NN or SVM classifiers. After all, the conclusions drawn
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from the results ensured the NN and SVM classifiers coincide closely with those provided by
the LR and AB classifiers.

Table 4. Classification accuracy and standard deviation [%] achieved with all the features tested and those considered as

age-independent at different acceptance thresholds, accThr. The number of features in optimal subset is given in square

brackets. Results were obtained with the NN and SVM classifiers separately for each muscle: EDL, GL, GM, and TC.

Problem Feature set EDL GL GM TC

N
N

cl
as

si
fie

r

differentiation
among

three phases

all tested 60.38 (6.01) 46.73 (7.18) 58.37 (5.49) 64.35 (4.84)
accThr = 50% 59.74 (6.18) [8] 57.89 (6.61) [6] 54.78 (5.58) [7] 67.36 (4.33) [6]
accThr = 40% 59.66 (5.65) [6] 57.89 (6.61) [6] 55.70 (6.01) [21] 63.41 (4.37) [6]
accThr = 30% 59.66 (5.65) [6] 57.89 (6.61) [6] 53.98 (6.18) [11] 57.21 (4.76) [4]

first phase
vs.

second phase

all tested 72.45 (6.67) 67.80 (7.54) 78.75 (5.64) 75.00 (5.36)
accThr = 50% 75.91 (6.94) [18] 72.34 (6.79) [5] 77.93 (5.87) [1] 80.07 (5.28) [6]
accThr = 40% 76.99 (7.35) [6] 72.34 (6.79) [5] 77.93 (5.87) [1] 75.36 (5.35) [7]
accThr = 30% 77.22 (6.00) [22] 72.34 (6.79) [5] 72.52 (5.82) [6] 73.79 (5.51) [8]

second phase
vs.

third phase

all tested 68.18 (6.61) 52.55 (9.22) 64.71 (7.54) 71.94 (5.01)
accThr = 50% 72.78 (6.10) [5] 62.98 (8.67) [19] 71.99 (6.62) [22] 72.14 (5.22) [6]
accThr = 40% 76.71 (5.81) [3] 62.48 (9.18) [10] 74.90 (6.93) [9] 72.34 (5.92) [28]
accThr = 30% 76.71 (5.81) [3] 62.48 (9.18) [10] 65.45 (8.12) [12] 67.11 (5.28) [3]

SV
M

cl
as

si
fie

r

differentiation
among

three phases

all tested 66.16 (5.61) 48.14 (6.55) 54.07 (5.65) 67.53 (4.84)
accThr = 50% 58.95 (5.99) [21] 59.21 (5.93) [13] 54.25 (4.90) [25] 69.79 (4.66) [21]
accThr = 40% 57.98 (5.53) [9] 59.21 (5.93) [13] 53.84 (5.46) [23] 66.22 (4.96) [28]
accThr = 30% 57.35 (5.96) [26] 59.21 (5.93) [13] 48.50 (4.52) [13] 58.35 (5.18) [10]

first phase
vs.

second phase

all tested 75.25 (6.72) 70.34 (7.96) 81.55 (5.92) 76.00 (5.19)
accThr = 50% 80.34 (6.54) [27] 77.05 (7.54) [31] 78.23 (5.99) [1] 79.21 (5.36) [19]
accThr = 40% 80.32 (6.68) [26] 75.68 (7.72) [30] 78.23 (5.99) [1] 76.71 (5.94) [9]
accThr = 30% 81.02 (6.67) [22] 74.18 (6.68) [9] 74.12 (4.31) [3] 76.29 (5.09) [9]

second phase
vs.

third phase

all tested 79.85 (5.30) 60.07 (9.32) 62.01 (7.64) 74.50 (4.83)
accThr = 50% 73.01 (5.23) [1] 65.07 (9.38) [13] 74.03 (7.34) [22] 74.58 (5.09) [30]
accThr = 40% 71.93 (5.05) [5] 65.07 (9.38) [13] 71.75 (6.59) [20] 73.62 (5.22) [28]
accThr = 30% 72.51 (5.71) [25] 65.07 (9.38) [13] 61.16 (6.80) [12] 68.21 (4.96) [4]

It can be seen that the results slightly differ between the NN and the SVM classifier, however,
some regularities can be reported. In the majority of cases (23 of 36 for the NN, and 20 of
36 for the SVM), the optimal subset of age-independent features indicated by the proposed
methodology, outperforms the set of all the features tested. This is observed regardless the
adopted value for the acceptance threshold. In many other cases, this optimal subset ensures
results only slightly inferior (by less than one percent) than those obtained with a full set of
features. Such a worsening is not significant. In some cases, especially at a lower threshold
value, the deterioration of classification accuracies is rather important, amounting to about
5%-9%. This is more frequently observed when using the SVM classifier, providing results
generally not as good as the NN one.

The choice of the optimal acceptance threshold depends on the muscle type and the classi-
fication problem. In fact, the numbers of features considered as age-dependent and discarded
at a given threshold vary among different muscles. At the same threshold, fewer features are
eliminated for the GL and EDL muscles, more – for the GM and TC muscles. Indeed, it is
for the GL and EDL muscles that generally smaller differences between the results at different
acceptance thresholds are observed. Consequently, setting the threshold at the lowest considered
level (30%) for these two muscles can be an acceptable solution, especially as in some cases
such a threshold guarantees a better result than that obtained at accThr = 50%. Different
trend is observed for the GM and TC muscles. Here, setting the threshold at 30% leads to a
greater worsening of the classification accuracies. Finally, the best results for the three-class
classification problem were achieved for the TC muscle, at accThr = 50%. They amounted
to 67.36% and 69.79%, for the NN and the SVM classifier, respectively and were higher than
those obtained with the full set of features, by 3.01% and 2.26%, respectively.

For the binary classification tasks, the results are more satisfactory. However, they also vary
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among different muscles. Elimination of features that contribute the most to the age identifi-
cation (at accThr = 50% or accThr = 40%) generally does not deteriorate the classification
accuracies, in comparison to those obtained with all the features. More significant worsening
of results (up to 7.43%) is sometimes observed at the lowest considered acceptance threshold.
Nevertheless, it is just at accThr = 30% that the best results for binary classification were
observed: 81.02% (ensured by the SVM classifier) and 76.71% (by the NN classifier) for
problem (i) – differentiating between the first and the second dystrophy phase, and problem
(ii) – differentiating between the second and the third dystrophy phase, respectively. Both those
results were obtained for the EDL muscle, which now turned out to be a bit more useful than
the TC muscle.

6. CONCLUSION AND FUTURE WORK

The study proposed a strategy for indicating the textural features that are the most appropriate
in testing the therapies of Duchenne muscular dystrophy. The concept considers that muscle
texture can evolve under the influence of both the course of the disease and the individual’s
development. The strategy was validated using the Golden Retriever Muscular Dystrophy canine
model, in which three phases of canine growth and/or disease progression were identified. In
total, 39 features derived from the T2-weighted MRI images were tested. First, a relative
importance of each feature in identifying the phase of growth in healthy dogs was assessed by
the modified Monte Carlo procedure. Features contributing too much to the age identification
(considered as age-dependent at a given acceptance threshold) were excluded from further
examinations. Next, the modified Monte Carlo procedure was run again, in order to find an
optimal subset of features while dystrophy phases were differentiated.

Experiments have shown that many features potentially evolving with age do exist. Moreover,
the feature importance in identifying phases of growth in healthy dogs may vary among
different types of muscles. In general, elimination of features contributing the most to the age
identification (accThr = 50%) does not significantly deteriorate the maximum system’s ability
to recognize dystrophy phases. An important role may also be played here by further selection
of features (from the features recognized as age-independent). Finally, setting the acceptance
threshold at a very low level may result in elimination of a large number of features and
therefore – may lead to an unsatisfactory identification of dystrophy phase.

A certain disadvantage of the database used is undoubtedly its small size. However, it should
be taken into account that hardly any research on image-based follow-up of the disease have
been performed so far, and there is still no large open database available for non-commercial
studies. Any other work on this subject is also based on rather small data repositories. The latter
fact can be related, among others, to a relatively high cost of conducting regular experiments
on dystrophic individuals. In the future, if the proposed strategy is to be applied in practice,
experiments should be repeated employing a larger number of subjects. More textural features
can be introduced, in particular model- and transform-based ones. Furthermore, as feature
importance in identifying phases of canine growth or dystrophy development can vary among
different muscles, a reasonable concept seems to be analyzing simultaneously features derived
from several muscles. Other image sequences can also be used, especially the T1-weighted
ones. Textural features corresponding to different image sequences can be combined as well.
Other methods can be applied for assessing the usefulness of features in testing the therapy’s
effects, especially at the first step of the adopted methodology. Here, one of the ideas may
be to perform statistical tests to indicate features with significant differences among all the
considered phases of the individual’s growth, e.g. using the analysis of variance. Finally, a
model describing the texture evolution under dystrophy progression is worth elaborating.
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