PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Growth and characterisation of LWIR T2SL on (100)-, (211)- and (311)-oriented GaSb substrates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Ga-free InAs/InAsSb type-II superlattice structures grown on GaSb substrates have demonstrated high performance for mid-wave infrared applications. However, realisation of long wavelength infrared photodetectors based on this material system still presents challenges, especially in terms of reduced quantum efficiency. This reduction is due, in part, to the increased type-II superlattice period required to attain longer wavelengths, as thicker periods decrease the wave-function overlap for the spatially separated quantum wells. One way to improve long wavelength infrared performance is to modify the type-II superlattice designs with a shorter superlattice period for a given wavelength, thereby increasing the wave-function overlap and the resulting optical absorption. Long wavelength infrared epitaxial structures with reduced periods have been realised by shifting the lattice constant of the type-II superlattice from GaSb to AlSb. Alternatively, epitaxial growth on substrates with orientations different than the traditional (100) surface presents another way for superlattice period reduction. In this work, the authors evaluate the performance of long wavelength infrared type-II superlattice detectors grown by molecular beam epitaxy using two different approaches to reduce the superlattice period: first, a metamorphic buffer to target the AlSb lattice parameter, and second, structures lattices matched to GaSb using substrates with different orientations. The use of the metamorphic buffer enabled a ~30% reduction in the superlattice period compared to reference baseline structures, maintaining a high quantum efficiency, but with the elevated dark current related to defects generated in the metamorphic buffer. Red-shift in a cut-off wavelength obtained from growths on highindex substrates offers a potential path to improve the infrared photodetector characteristics. Focal plane arrays were fabricated on (100), (311)A- and (211)B-oriented structures to compare the performance of each approach.
Rocznik
Strony
art. no. e144568
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
autor
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
autor
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
autor
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  • IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  • IQE, Pascal Close, St. Mellons, Cardiff, CF3 0LW, UK
  • IQE, Pascal Close, St. Mellons, Cardiff, CF3 0LW, UK
  • QmagiQ, LCC, 22 Cotton Rd., Unit H, Suite 180, Nashua, NH 03063, USA
autor
  • QmagiQ, LCC, 22 Cotton Rd., Unit H, Suite 180, Nashua, NH 03063, USA
  • QmagiQ, LCC, 22 Cotton Rd., Unit H, Suite 180, Nashua, NH 03063, USA
Bibliografia
  • [1] Lubyshev, D. et al. Effect of substrate orientation on Sb-based MWIR photodetector characteristics. Infrared Phys. Technol. 95, 27-32 (2018). https://doi.org/10.1016/j.infrared.2018.09.031
  • [2] Lubyshev, D. et al. T2SL mid- and long-wave infrared photodetector structures grown on (211)A, (211)B, and (311)A GaSb substrates. Proc. SPIE 11002, 110020N (2019). https://doi.org/10.1117/12.2521066
  • [3] Williams, A. & Tidrow, M. III-V infrared focal plane array development in US. Proc. SPIE 10624, 10624OP (2018). https://doi.org/10.1117/12.2311494
  • [4] Lubyshev, D. et al. Manufacturable MBE growth process for Sb-based photodetector materials on large diameter substrates. Proc. SPIE 8268, 82681A (2012). https://doi.org/10.1117/12.909571
  • [5] Steenbergen, E. H. Strain-balanced InAs-InAsSb Type-II Super-lattices on GaSb Substrates for Infrared Photodetector Applications (Arizona State University, 2012).
  • [6] Manyk, T., Michalczewski, K., Murawski, K., Martyniuk, P. & Rutkowski, J. InAs/InAsSb strain-balanced superlattices for longwave infrared detectors. Sensors 19, 1907 (2019). https://doi.org/10.3390/s19081907
  • [7] Ting, D. Z. et. al. Very Long Wavelength InAs/InAsSb Type-II Superlattice Barrier Infrared Detectors and FPAs. in 15th International Conference on Mid-Infrared Materials and Devices (MIOMD) 1-10 (2021). https://trs.jpl.nasa.gov/bitstream/handle/ 2014/55742/CL%2321-3917.pdf?sequence=1
  • [8] Ting, D. Z. InAs/InAsSb Superlattice Infrared Detectors. in Quantum Structure Infrared Photodetectors (QSIP) International Conference,Poland (2022).
  • [9] Alshahrani, D. O., Kesaria, M., Anyebe, E. A., Srivastava, V. & Huffaker, D. L. Emerging type-II superlattices of InAs/InAsSb and InAs/ GaSb for mid-wavelength infrared photodetectors. Adv. Photonics Res. 3, 2100094 (2022). https://doi.org/10.1002/adpr.202100094
  • [10] Klein, B. et al. Carrier lifetime studies in midwave infrared type-II InAs/GaSb strained layer superlattice. J. Vac. Sci. Technol. B 32, 02C101 (2014). https://doi.org/10.1116/1.4862085
  • [11] Aytac, Y. et al. Effects of layer thickness and alloy composition on carrier lifetimes in mid-wave infrared InAs/InAsSb superlattices. Appl. Phys. Lett. 105, 022107 (2014). https://doi.org/10.1063/1.4890578
  • [12] Baril, N. F. et al. Growth of III-V Infrared Detector Device Layers on The AlSb Lattice Via Metamorphic Buffer Layers. in Quantum Structure Infrared Photodetectors (QSIP) International Conference, Poland (2022).
  • [13] Lubyshev, D. et al. Manufacturable MBE growth process for Sb-based photodetector materials on large diameter substrates. Proc. SPIE 8268, 82681A (2012). https://doi.org/10.1117/12.909571
  • [14] Lubyshev, D. et al. MBE growth of Sb-based type-II strained layer superlattice structures on multi wafer production reactor. Proc. SPIE 7660, 76601J (2010). https://doi.org/10.1117/12.851053
  • [15] Ting, D. Z. et al. Advances in III-V semiconductor infrared absorbers and detectors. Infrared Phys. Technol. 97, 210–216 (2019). https://doi.org/10.1016/j.infrared.2018.12.034
  • [16] Ting, D. Z. et al. Long and very long wavelength InAs/InAsSb superlattice complimentary barrier infrared detectors. J. Electron. Mater. 51, 4666-4674 (2022). https://doi.org/10.1007/s11664-022-09561-3
  • [17] Shao, H., Li, W., Moscicka, D. & Wang, W. I. Type-II InAs/GaSb superlattices grown on GaSb (311)B by molecular beam epitaxy for long-wavelength infrared applications. J. Vac. Sci. Technol. B 24, 2144 (2006). https://doi.org/10.1116/1.2214705
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8ba6507f-0bb2-4d8a-b2fe-eddc8a2b1e9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.