PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Engineering practical thermal evaluation method of wrap-around liquid-cooled motor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To meet the increasingly rigorous operational demands in motor applications, enhancing the torque output capacity has become a crucial area of focus for advancing industry growth. Given the limitations imposed by thermal constraints on a motor’s torque output, this paper presents a wrap-around liquid-cooled thermal management system as an efficient solution, using a 40 kW permanent magnet synchronous motor (PMSM) as a case study. Additionally, to enable fast and accurate temperature distribution analysis of each motor component during the design phase, a magneto-thermal coupling model is developed based on a three-dimensional thermal network. This model incorporates both electromagnetic loss, node temperature, and thermal parameters while also accounting for the temperature-dependent characteristics of materials and thermal properties. The finite element analysis method and mock-up experiments verify the accuracy of the thermal evaluation model and cooling efficiency of the wrap-around liquid-cooled motor. The proposal of the wrap-around liquid-cooled scheme further improves the thermal management efficiency of the motor, with a 44.5% increase compared to the indirect casing cooling scheme. The establishment of a coupled model not only improves the accuracy of analysis, but also significantly reduces the cycle of thermal evaluation, which has important guiding significance for the design and optimization of motors in engineering practice.
Rocznik
Strony
463--486
Opis fizyczny
Bibliogr. 29 poz., fot., rys., wykr., wz.
Twórcy
autor
  • School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
autor
  • School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
autor
  • School of Control Science and Engineering, Bohai University, Jinzhou 121013, China
autor
  • School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
autor
  • Shenyang KINGSEM Co., Ltd., Shenyang 110870, China
autor
  • School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
autor
  • School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China
Bibliografia
  • [1] Hou Q. et al., Evaluation and test of impact-resistant overload capability of companion-type direct cooling motor, IEEE Access, vol. 11, pp. 126295–126311 (2023), DOI: 10.1109/ACCESS.2023.3257996.
  • [2] Krok R., Influence of work environment on thermal state of electric mine motors, Archives of Electrical Engineering, vol. 60, no. 3, pp. 357–370 (2011), DOI: 10.2478/v10171-011-0031-6.
  • [3] Feng J., Tan D., Yuan M., Influence of road excitation on thermal field characteristics of the water-cooled IWM, Archives of Electrical Engineering, vol. 70, no. 3, pp. 689–704 (2021), DOI: 10.24425/aee.2021.137582.
  • [4] Yin Y., Li H., Xiang X., Oil Friction Loss Evaluation of Oil-Immersed Cooling In-Wheel Motor Based on Improved Analytical Method and VOF Mode, World Electric Vehicle Journal, vol. 12, no. 4 (2021), DOI: 10.3390/wevj12040164.
  • [5] Liu C., Zou J., Xu Y., Yu G., An Efficient Thermal Computation Model of PMSM Based on FEA Results and Interpolation, IEEE Trans. Appl. Supercond., vol. 31, no. 8, pp. 1–4 (2021), DOI: 10.1109/TASC.2021.3096512.
  • [6] Acquaviva A., Wallmark O., Grunditz E.A., Lundmark S.T., Thiringer T., Computationally Efficient Modeling of Electrical Machines with Cooling Jacket, IEEE Trans. Transport. Electrific., vol. 5, no. 3, pp. 618–629 (2019), https://ieeexplore.ieee.org/abstract/document/8805130.
  • [7] Jin L., Mao Y., Wang X., Lu L., Wang Z., A Model-Based and Data-Driven Integrated Temperature Estimation Method for PMSM, IEEE Trans. Power Electron., vol. 39, no. 7, pp. 8553–8561 (2024), DOI: 10.1109/TPEL.2024.3382300.
  • [8] Wang Xiaoyuan, Li Na, Li Tianyuan, Xu Yuhao, Electromagnetic design of an ultra-high-speed bearingless permanent magnet synchronous motor, IET Electr. Power Appl., vol. 18, no. 3, pp. 287–296 (2023), DOI: 10.1049/elp2.12388.
  • [9] Min S.G., Sarlioglu B., 3-D Performance Analysis and Multiobjective Optimization of Coreless-Type PM Linear Synchronous Motors, IEEE Trans. Ind. Electron., vol. 65, no. 2, pp. 1855–1864 (2018), DOI: 10.1109/TIE.2017.2745475.
  • [10] Attila Nyitrai, Miklós Kuczmann, Magnetic equivalent circuit and finite element modelling of anisotropic rotor axial flux permanent magnet synchronous motors with fractional slot distributed winding, IET Electr. Power Appl., vol. 17, no. 5, pp. 709–720 (2023), DOI: 10.1049/elp2.12298.
  • [11] Zhao W., Cao D., Ji J., Huang L., Liu T., A Generalized Mesh-Based Thermal Network Model for SPM Machines Combining Coupled Winding Solution, IEEE Trans. Ind. Electron., vol. 68, no. 1, pp. 116–127 (2021), DOI: 10.1109/TIE.2020.2965484.
  • [12] Chen Y., Zhu X., Quan L., Wang L., Performance analysis of a double-salient permanent-magnet double-rotor motor using electromagnetic–thermal coupling method, IEEE Trans. Appl. Supercond., vol. 26, no. 4, pp. 1–5 (2016), DOI: 10.1109/TASC.2016.2543598.
  • [13] Tahavvor A.R., Shokoohi N., Simulation of turbulent natural convection heat transfer in the horizontal annulus using artificial neural networks, Iranian J. Sci. Technol. Trans. Mech. Eng., vol. 46, no. 4, pp. 1289–1300 (2022), DOI: 10.1007/s40997-022-00500-5.
  • [14] Wang H., Chen J., Jiang Y., Wang D., Coupled Electromagnetic and Thermal Analysis of Permanent Magnet Rectifier Generator Based on LPTN, IEEE Trans. Magn., vol. 58, no. 2, pp. 1–5 (2022), DOI: 10.1109/TMAG.2021.3085089.
  • [15] Ryu J.-Y., Hwang S.-W., Chin J.-W., Hwang Y.-S., Yoon S.W., Lim M.-S., Mathematical Modeling of Fast and Accurate Coupled Electromagnetic-Thermal Analysis, IEEE Trans. Ind. Appl., vol. 57, no. 5, pp. 4636–4645 (2021), DOI: 10.1109/TIA.2021.3086823.
  • [16] Li Z., Chen Q., Wang Q., Analysis of multi-physics coupling field of multi-degree-of-freedom permanent magnet spherical motor, IEEE Trans. Magn., vol. 55, no. 6, pp. 1–5 (2019), DOI: 10.1109/TMAG.2019.2899259.
  • [17] Yu Q., He C., Tian L., Wang X., Cheng Y., Flux linkage estimation with saliency and can effect of a canshielded switched reluctance motor using a simple circuit network model, Int. J. Appl. Electromagn. Mech., vol. 56, no. 1, pp. 103–113 (2017), DOI: 10.3233/JAE-170109.
  • [18] Wang J., Cheng M., Qin W., Liu Q., Fast Calculation Method of Bi-Direction Coupling Between Electromagnetic-Thermal Field for FSPM Motor, IEEE Trans. Magn., vol. 59, no. 12, pp. 1–9 (2023), DOI: 10.1109/TMAG.2023.3323566.
  • [19] Li H., Krein P.T., Jin J.-M., Electromagnetic-Thermal Modeling of Nonlinear Magnetic Materials, IEEE J. Multiscale Multiphys. Comput. Technol., vol. 8, pp. 1–10 (2023), DOI: 10.1109/JMMCT.2022.3229963.
  • [20] Dong B., Wang K., Han B., Zheng S., Thermal analysis and experimental validation of a 30 kW 60000 r/min high-speed permanent magnet motor with magnetic bearings, IEEE Access, vol. 7, pp. 92184–92192 (2019), DOI: 10.1109/ACCESS.2019.2927464.
  • [21] Zhao H., Zuo W., Li Q., Cheng Q., Pan N., Zhou K., Thermal–hydraulic performance optimization of the spiral cooling channel in surface type permanent magnet synchronous motor, J. Thermal Anal. Calorimetry, vol. 148, no. 19, pp. 10345–10355 (2023), DOI: 10.1007/s10973-023-12390-z.
  • [22] Hu X., Shi G., Lai Y. et al., Temperature Rise Calculation of the High Speed Magnetic Suspension Motor Based on Bidirectional Electromagnetic–Thermal–Fluid Coupling Analysis, Machines, vol. 11, no. 3 (2023), DOI: 10.3390/machines11030364.
  • [23] Liu C., Li Y., Zhang H. et al., Performance analysis of permanent magnet claw pole machine based on magneto-electric-thermal coupling network method, Electr. Eng., vol. 106, no. 3, pp. 3559–3572 (2024), DOI: 10.1007/s00202-023-02154-1.
  • [24] Ishikawa T., Qu H., Kasahara K., Maximum efficiency of induction motors considering iron loss resistance, IEEJ Trans. Elect. Electron. Eng., vol. 14, no. 9, pp. 1426–1427 (2019), DOI: 10.1002/tee.22947.
  • [25] Tong W., Sun L., Wu S., Hou M., Tang R., Analytical Model and Experimental Verification of Permanent Magnet Eddy Current Loss in Permanent Magnet Machines with Nonconcentric Magnetic Poles, IEEE Trans. Ind. Electron., vol. 69, no. 9, pp. 8815–8824 (2022), DOI: 10.1109/TIE.2021.3111573.
  • [26] Zehri A.H., Nylander A., Ye L., Liu J., Graphene-coated copper nanoparticles for thermal conductivity enhancement in water-based nanofluid, in 2019 22nd Eur. Microelectronics Packag. Conf. Exhib., Pisa, Italy, pp. 1–7 (2019), DOI: 10.23919/EMPC44848.2019.8951883.
  • [27] Naito T. et al., Thermal conductivity of YBCO coated conductors reinforced by metal tape, IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 3037–3040 (2011), DOI: 10.1109/TASC.2010.2089481.
  • [28] Bagrets N., Heller R., Weis J.R., Weiss K.P., Thermal resistance between metallic surfaces of copper and stainless steel at different temperatures and applied forces for high current HTS cable-in-conduit conductors, IEEE Trans. Appl. Supercond., vol. 32, no. 6, pp. 1–5 (2022), DOI: 10.1109/TASC.2022.3154327.
  • [29] Shanin Y.V., Bondar A.S., Chmilenko F.V., Zhang Q., Neural network for predicting the thermal conductivity of steel with the Bayesian method using matlab software, in 2021 IEEE Con. Russian Young Researchers Elect. Electron. Eng. (ElConRus), St. Petersburg, Moscow, Russia, pp. 1083–1087 (2021), DOI: 10.1109/ElConRus51938.2021.9396378.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b9e481d-9ce7-485d-b9cb-f6a81832829b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.