PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Studies on water transport in quasi two-dimensional porous systems using neutron radiography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The spontaneous wetting and drying of flat porous samples of linen, cotton and synthetic textiles were studied using dynamic neutron radiography (DNR). The progress of the wetting process of the media was delineated from the obtained neutron dynamical radiography images. The results of the investigation reveal a non-classical behaviour of kinetics of wicking of these materials. The character of the wetting kinetics is discussed in terms of the fractal character of the tortuosity of fabric capillaries.
Słowa kluczowe
Czasopismo
Rocznik
Strony
3--9
Opis fizyczny
Bibliogr. 30 poz., rys.
Twórcy
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
  • Rogante Engineering Office Contrada San Michel 61, 62012 Civitanova Marche Italy
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
  • National Centre for Nuclear Research Andrzeja Sołtana 7 Str., 05-400 Otwock-Świerk, Poland
Bibliografia
  • 1. Azeem, M., Boughattas, A., Wiener, J., & Havelka, A. (2017). Mechanism of liquid water transport in fabrics: A review. Vlákna a textil (Fibres and Textiles), 24(4), 58–65. http://vat.ft.tul.cz/2017/4/VaT_2017_4_10.pdf.
  • 2. Lei, M., Li, Y., Liu, Y., Ma, Y., Cheng, L., & Hu, Y.(2020). Effect of weaving structures on the water wicking-evaporating behavior of woven fabrics.Polymers, 12, 422. DOI: 10.3390/polym12020422.
  • 3. de Azevedo, E. N., Alme, L. R., Engelsberg, M., Fossum, J. O., & Dommersnes, P. (2008). Fluid imbibition in paper fibres: Precursor front. Phys. Rev. E, 78, 066317. DOI: 10.1103/PhysRevE.78.066317.
  • 4. Benloufa, S., Fayala, F., & Nasrallah, S. B. (2008). Capillary rise in micro pores of jersey knitting structure. J. Eng. Fiber Fabr., 3(3), 47–54. http://www.jeffjournal. org/papers/Volume3/JEFF08-00007R1Benltoufa.pdf.
  • 5. Abd, A. E. -E., Czachor, A., Milczarek, J. J., & Pogorzelski, J. (2005). Neutron radiography studies of water migration in construction porous materials. IEEE Trans. Nucl. Sci., 52(1), 299–304. DOI: 10.1109/TNS.2005.843642.
  • 6. Hamdaoui, M., Achour, N. S., & Nasrallah, S. B. (2014). The influence of woven fabric structure on kinetics of water sorbtion. J. Eng. Fiber Fabr., 9(1), 101–106. http://www.jeffjournal.org/papers/Volume9/V9I1.12.M.Hamdaoui.pdf.
  • 7. Samyn, P. (2013). Wetting and hydrophobic modification of cellulose surfaces for paper applications. J. Mater. Sci., 48(19), 6455–6498. DOI: 10.1007/s10853-013-7519-y.
  • 8. Xie, Y., Hill, C. A. S., Jalaludin, Z., Curling, S. F., Anandjiwala, R. D., Norton, A. J., & Newman, G. (2011). The dynamic water vapour sorption behaviour of natural fibres and kinetic analysis using the parallel exponential kinetics model. J. Mater. Sci., 46(2), 479–489. DOI: 10.1007/s10853-010-4935-0.
  • 9. Abd, A. E., & Milczarek, J. J. (2004). Neutron radiography study of water absorption in porous building materials: anomalous diffusion analysis. J. Phys. DAppl. Phys., 37(16), 2305–2313. DOI: 10.1088/0022-3727/37/16/013.
  • 10. Leisen, J., Hojjatie, B., Coffin, D. W., & Beckham, H. W. (2001). In-plane moisture transport in paper detected by magnetic resonance imaging. Dry. Technol., 19(1), 199–206. DOI: 10.1081/DRT-100001361.
  • 11. Perré, P. (2011). A review of modern computational and experimental tools relevant to the field of drying. Dry. Technol., 29(13), 1529–1541. DOI: 10.1080/07373937.2011.580872.
  • 12. Escalona, I., Jomaa, W., Olivera-Fuentes, C., Crine, M., & Leonard, A. (2010). Convective drying of gels: Comparison between simulated and experimental moisture profi les obtained by X-ray microtomography. Dry. Technol., 28(5), 644–650. DOI: 10.1080/07373931003788734.
  • 13. Domanus, J. C. (Ed.). (1992). Practical neutron radiography. Dordrecht: Kluwer Academic Publishers. (EUR-14424).
  • 14. Strobl, M., Manke, I., Kardjilov, N., Hilger, A., Dawson, M., & Banhart, J. (2009). Advances in neutron radiography and tomography. J. Phys. DAppl. Phys., 42(24), 243001. DOI: 10.1088/0022-3727/42/24/243001.
  • 15. Anderson, I. S., McGreevy, R. L., & Bilheux, H. Z. (Eds.). (2009). Neutron imaging and applications. Berlin: Springer. DOI: 10.1007/978-0-387-78693-3.
  • 16. Milczarek, J. J., Czachor, A., Abd, A. E., & Wiśniewski, Z. (2005). Dynamic neutron radiography observations of water migration in porous media. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 542(1/3), 232–236. DOI: 10.1016/j.nima.2005.01.105.
  • 17. Cmiel, K., Milczarek, J. J., Bam, L. C., Fijał-Kirejczyk, I. M., Jurkowski, Z., & Żołądek, J. (2013). Drying kinetics of particulate corundum layers. Acta Phys. Pol. A, 124, 1029–1033. DOI: 10.12693/APhysPolA.124.1029.
  • 18. Fijał-Kirejczyk, I. M., Milczarek, J. J., ŻołądekNowak, J., de Beer, F. C., Radebe, M. B., & Nothnagel, G. (2012). Application of statistical image analysis in Studies on water transport in quasi two-dimensional porous systems using neutron radiography 9 quantifcation of neutron radiography images of drying. Acta Phys. Pol. A, 122, 410–414. DOI: 10.12693/APhysPolA.122.410.
  • 19. Fijał-Kirejczyk, I. M., Milczarek, J. J., de Beer, F. C., Radebe, M. B., Nothnagel, G., & Żołądek-Nowak, J. (2012). Thermal neutron radiography studies of drying of rectangular blocks of wet mortar. Nukleonika, 57(4), 529–535. http://www.nukleonika.pl/www/back/full/vol57_2012/v57n4p529f.pdf.
  • 20. Rasband, W. S. (1997–2018). ImageJ [computer software]. Bethesda, Maryland, USA: National Institutes of Health. https://imagej.nih.gov/ij/.
  • 21. Lehmann, E. H., Vontobel, P., & Kardjilov, N. (2004). Hydrogen distribution measurements by neutrons. Appl. Radiat. Isot., 61, 503–509. DOI: 10.1016/j. apradiso.2004.03.075.
  • 22. Kardijlov, N., de Beer, F., Hassanein, R., Lehmann, E., & Vontobel, P. (2005). Scattering corrections in neutron radiography using point scattered functions. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equ., 542, 336–341. DOI: 10.1016/j.nima.205.01.159.
  • 23. Deinert, M. R., Parlange, J. -Y., Steenhuis, T., Throop, J., Ünlü, K., & Cady, K. B. (2004). Measurement of fluid contents and wetting front profiles by real-time neutron radiography. J. Hydrol., 290, 192–201. DOI: 10.1016/j.hydrol.2003.11.018.
  • 24. Kim, F. H., Penumadu, D., & Hussey, D. S. (2012). Water distribution variation in partially saturated granular materials using neutron imaging. J. Geotech. Geoenviron. Eng., 138(2), 147–154. DOI: 10.1061/(ASCE)GT.1943-5606.0000583.
  • 25. Kang, M., Bilheux, H. Z., Voisin, S., Cheng, C. L., Perfect, E., Horita, J., & Warren, J. M. (2013). Water calibration measurements for neutron radiography: Application to water content quantification in porous media. Nucl. Instrum. Methods Phys. Res. Sect. AAccel. Spectrom. Dect. Assoc. Equ. 708, 24–31. DOI:10.1016/j.nima.2012.12.112.
  • 26. Parada, M., Vontobel, P., Rossi, R. M., Derome, D., & Carmeliet, J. (2017). Dynamic wicking process in textiles. Transp. Porous Media, 119, 611–632. DOI: 10.1007/s11242-017-0901-5.
  • 27. Cai, J., & Yu, B. (2011). A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media, 89(2), 251–253. DOI:10.1007/s11242-011-9767-0.
  • 28. Cai, J. -C., Yu, B. -M., Mei, M. -F., & Luo, L. (2010). Capillary rise in a single tortuous capillary. Chin. Phys. Lett., 27(5), 054701. DOI: 10.1088/0256-307X/27/5/054701.
  • 29. Metzler, R., & Klafter, J. (2000). The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339, 1–77. DOI: 10.1016/S0370-1573(00)00070-3.
  • 30. de Azevedo, E. N., de Sousa, P. L., de Souza, R. E., Engelsberg, M., de Miranda, M. N. do N., & Silva, M. A. (2006). Concentration dependent diffusivity and anomalous diffusion: A magnetic resonance imaging study of water ingress in porous zeolite. Phys. Rev.E, 73, 011204. DOI: 10.1103/PhysRevE.73.011204.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b9c5a06-725c-44f8-a160-ed3b380f465e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.