PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polycarbonate/Polypropylene-Graft-Maleic Anhydride and Nano-Zeolite-Based Nanocomposite Membrane: Mechanical and Gas Separation Performance

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this effort, blend membrane of polycarbonate (PC) and polypropylene-graft-maleic anhydride (PPMA) was fabricated via phase inversion technique. The nano-zeolite (NZ) was employed as nanofiller. Morphology of PC/PPMA/NZ membrane revealed unique inter-connected branched microstructure. Tensile strength and Young’s Modulus of PC/PPMA/NZ 0.1-5 were in the range of 59.9-74.5 MPa and 111.4-155.2 MPa respectively. The nano-zeolite filler was also effective in enhancing the permselectivity αCO2/N2 (23.5 to 38.5) relative to blend membrane (20.3). The permeability PCO2 of PC/PPMA/NZ 5 membrane was found as 106.2 Barrer. Filler loading enhanced gas diffusivity, however filler content did not significantly influence CO2 and N2 solubility.
Rocznik
Strony
17--28
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Nanoscience and Technology Department, National Centre For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
Bibliografia
  • 1. Kausar A., Ullah W., Muhammad B., Siddiq, M.: Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites, Adv. Mater. Sci. 14 (2014) 61-74.
  • 2. Kausar A.: Effect of nanofiller dispersion on morphology, mechanical and conducting properties of electroactive shape memory Poly (urethane-urea)/functional nanodiamond composite, Adv. Mater. Sci. 15 (2015) 14-28.
  • 3. Budzik M., Pilawka R., Imielińska K., Jumel J., Shanahan M.: Fracture of Aluminium Joints Bonded with Epoxy Adhesive Reinforced by MMT Nanoparticles. Adv. Mater. Sci. 9 (2009) 4-11.
  • 4. Seramak T., Serbiński W., Zieliński, A.: Porous biomaterial for orthopaedic implants based on titanium alloy, Adv. Mater. Sci. 11(2011) 27-34.
  • 5. El-Sabbagh S.H., Mahmoud D.S., Zawrah M. F., Ahmed N. M., Sabaa M.W.: Investigation on the properties of rubber composites containing modified clay, Pigment. Resin. Technol. 44 (2015) 131-142.
  • 6. Liu Y., Zhu X., Wang S., Zhao M.: Surface imprinted superparamagnetic nanoparticles for rapid and efficient extraction of bisphenol A form water samples, J. Chin. Adv. Mater. Soc. 1 (2013) 166-176.
  • 7. Patel R., Kim S. J., Roh D. K., Kim. J. H: Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes, Chem. Eng. J. 254 (2014) 46-53.
  • 8. Bushell A.F., Attfield M.P., Mason C.R., Budd P.M., Yampolskii Y., Starannikova L., Rebrov A., Bazzarelli F., Bernardo P., Jansen J.C., Lanč, M.: Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. membran. sci. 427 (2013) 48-62.
  • 9. Muntha S. T., Kausar A., Siddiq. M.: A Review on Zeolite Reinforced Polymeric Membranes: Salient Features and Applications, Polym. Plast. Technol. Engineer. (2016) DOI:10.1080/03602559.2016.1185631.
  • 10. Rutkowska M., Chmielarz L., Macina D., Dudek B., Van Oers C., Cool P.: Hierarchical materials originated from mesoporous MCF material and Beta zeolite nanoparticles-synthesis and catalytic activity in N2O decomposition, J. Chin. Adv. Mater. Soc. 1 (2013) 48-55.
  • 11. Yao J., Wang H.: Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications, Chem. Soc. Rev. 43 (2014) 4470-4493.
  • 12. Ghosh A. K., Hoek E. M., Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, J. Membr. Sci. 336 (2009) 140-148.
  • 13. Kim M., Lee S.: Characteristics of porous polycarbonate membrane with polyethylene glycol in supercritical CO2 and effect of its porosity on tearing stress, J. Supercrit. Fluids. 31 (2004) 217-225.
  • 14. Li Y., He G., Wang S., Yu S., Pan F., Wu, H., Jiang, Z.: Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A. 1 (2013) 10058-10077.
  • 15. Kim S., Lee Y.M.: Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci. 43 (2015) 1-32.
  • 16. Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D.: Energy-efficient polymeric gas separation membranes for a sustainable future: a review, Polymer. 54 (2013) 4729-4761.
  • 17. Ali W., Kausar A., Iqbal T.: Reinforcement of high performance polystyrene/polyamide/polythiophene with multi-walled carbon nanotube obtained through various routes, Compos. Interfac. 22 (2015) 885-897.
  • 18. Mehwish N. Kausar A., Siddiq M.: Polyvinylidenefluoride/Poly(styrene-butadiene-styrene)/Silver Nanoparticle-Grafted-Acid Chloride Functional MWCNTs-Based Nanocomposites: Preparation and Properties, Polym. Plast. Technol. Engineer. 54 (2015) 474-483.
  • 19. Kim J., Son Y.: Effects of matrix viscosity, mixing method and annealing on the electrical conductivity of injection molded polycarbonate/MWCNT nanocomposites, Polymer. 88 (2016) 29-35.
  • 20. Tian Z., Dai S., Jiang D.E.: Expanded porphyrins as two-dimensional porous membranes for CO2 separation, A.C.S. Appl. Mater. Interface. 7 (2015) 13073-13079.
  • 21. Kausar A.: Proton exchange fuel cell membranes of poly(benzimidazole-amide)/sulfonated polystyrene/titania nanoparticles-grafted-multi-walled carbon nanotubes, J. Plast. Film. Sheet. (2014) 8756087914526879.
  • 22. Yampolskii Y.: Polymeric gas separation membranes, Macromolecules. 45 (2012) 3298-3311.
  • 23. Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M.: Performance studies of mixed matrix membranes for gas separation: a review, Separat. Purificat. Technol. 75 (2010) 229-242.
  • 24. Süer M.G., Baç N., Yilmaz, L.: Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Membran. Sci. 91 (1994) 77-86.
  • 25. Koros W.J., Chan A. H., Paul D. R.: Sorption and transport of various gases in polycarbonate, J. Membran. Sci. 21 (977) 165-190.
  • 26. Charkhi A., Kazemian H., Kazemeini M.: Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders, Powder. Technol. 203 (2010) 389-396.
  • 27. Pinnau I., Koros W. J.: Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion, J. Appl. Polym. Sci. 43 (1991) 1491-1502.
  • 28. Fathizadeh M., Aroujalian A., Raisi A.: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Membran. Sci. 375 (2011) 88-95.
  • 29. O’Brien-Abraham J., Kanezashi M., Lin Y.S.: A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes, Micropor. Mesopor. Mater. 105 (2007) 140-148.
  • 30. Jia M. D., Pleinemann K. V., Behling R. D.: Preparation and characterization of thin-film zeolite–PDMS composite membranes, J. Membran. Sci. 73 (1992) 119-128.
  • 31. Vu D.Q., Koros W.J., Miller S.J.: Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, J. Membran. Sci. 211 (2003) 311-334.
  • 32. Merkel T. C., Freeman B. D., Spontak R. J., He Z., Pinnau I., Meakin P., Hill A. J.: Sorption, transport, and structural evidence for enhanced free volume in poly (4-methyl-2-pentyne)/fumed silica nanocomposite membranes, Chem. Mater. 15 (2003) 109-123.
  • 33. Ahn J., Chung W.J., Pinnau I., Guiver M.D.: Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membran. Sci. 314 (2008) 123-133.
  • 34. Bakker, W.J., Kapteijn, F., Poppe, J. and Moulijn, J.A., 1996. Permeation characteristics of a metal-supported silicalite-1 zeolite membrane. J. Membran. Sci. 117 (1996) 57-78.
  • 35. Barrer, R.M. Porous crystal membranes. J. Chem. Soc. Faraday Trans. 86 (1990) 1123-1130.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b9a3b82-0fa3-4c81-8817-2b6a687384c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.