Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article investigates the impact of a sudden application or sudden withdrawal of a magnetic field on an unsteady MHD Couette flow formation in a parallel plate channel. The governing momentum equation is derived and solved exactly in Laplace domain using the Laplace transform technique with the necessary initial and boundary conditions to capture the present physical situation for the cases; sudden application or sudden withdrawal of a magnetic field. Due to the complexity of the solution obtained, the Riemann-sum approximation technique is used to transform the Laplace domain to time domain. During the course of graphical and tabular representations, results show that the Hartmann number, time and nature of application of a magnetic field play an important role in the transition from hydrodynamic to magnetohydrodynamic flow and vice-versa. Also, fluid velocity steady-state solution is independent on whether the magnetic field is fixed relative to the moving plate or to the fluid for sudden withdrawal of magnetic field. In addition, the application of a sudden magnetic field leads to a delay in the attainment of steady-state solution.
Rocznik
Tom
Strony
92--105
Opis fizyczny
Bibliogr. 17 poz., tab., wykr.
Twórcy
autor
- Department of Mathematics, Ahmadu Bello University Zaria, NIGERIA
autor
- Department of Mathematics, Ahmadu Bello University Zaria, NIGERIA
Bibliografia
- [1] Hartmann J. (1937): Hg-Dynamics I. Theory of laminar flow of an electrically conductive liquid in a homogeneous magnetic field. Kgl. Danske Videnskabernes Salskab, Mathematisk-Fysiske Meddelelser, vol.15, No.6.
- [2] Hartmann J. and Lazarus F. (1937): Hg-Dynamics II. Experimental investigation on the flow of mercury in a homogeneous magnetic field. Kgl. Danske Videnskabernes Salskab, Mathematisk-Fysiske Meddelelser, vol.15, No.6.
- [3] Rossow V.J. (1957): Flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field. Report 1358 National Advesory Committee for Aeronautics.
- [4] Singh A.K. and Kumar N. (1983): Unsteady hydromagnetic Couette flow. Wear, vol.89, pp.125-129.
- [5] Singh A.K., Sacheti N.C. and Chandran P. (1994): Transient effects on magnetohydrodynamics Couette flow with rotation: accelerated motion. International Journal of Engineering Science, vol.32, pp.133-139.
- [6] Couette M.M. (1890): Etudes sur le frottement des liquids. Ann Chim. Phys. 6, Ser., vol.21, pp.433-510.
- [7] Jha B.K. and Apere C.A. (2010): Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus. J. Phy. Soc. Jpn, vol.79, No.12, pp.124403-124403-5.
- [8] Mazumder B.S. (1991): An exact solution of oscillatory Couette flow in a rotating system. ASME J. Appl. Mech., vol.58, No.4, pp.1104-1107.
- [9] Jha B.K. and Odengle J.O. (2015): Unsteady MHD Couette flow in composite channel partially filled with porous material: A semi-analytical Approach. Transp. Porous Med., vol.107, pp.219-234.
- [10] Akonur A. and Lueptor R.M. (2003): Three dimensional velocity field for wavy Taylor-Couette flow. Phys. Fluids, vol.15, pp.947-960.
- [11] Kumaran V., Kumar A.V. and Pop I. (2010): Transition of MHD boundary layer flow past a stretching sheet. Commun. Nonlinear Sci. Numer. Simulat., vol.15, pp.300-311.
- [12] Pai S.I. (1962): Magnetogasdynamics and Plasma Dynamics. Berlin: Springer.
- [13] Jha B.K. and Apere C.A. (2010): Unsteady MHD Couette flow in Annuli: the Riemann-sum approximation Approach. J. Phy. Soc. Jpn, vol.79, No.12, pp.124403-124403-5.
- [14] Khadrawi A.F. and Al-Nimr M.A. (2007): Unsteady natural convection fluid flow in a vertical microchannel under the effect of the Dual-phase-lag heat conduction model. Int. J. Thermophys., vol.28, pp.1387-1400.
- [15] Jha B.K. and Oni M.O. (2018): Transient Natural Convection flow between Vertical Concentric Cylinders Heated/Cooled Asymmetrically. Proc IMechE Part A: J Power and Energy, DOI: 10.1177/0957650918758743.
- [16] Jha B.K. and Oni M.O. (2017): An analytical solution for temperature field around a cylindrical surface subjected to a time dependent heat flux: An alternative approach. https://doi.org/10.1016/j.aej.2017.01.003.
- [17] Tzou D.Y. (1997): Macro to Microscale Heat Transfer: The Lagging Behaviour. Washington: Taylor and Francis.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8b999061-ff1f-45dc-84c2-8a13c04ed218